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Abstract

Materials with characteristic structures at nanoscale sizes exhibit significantly different mechani-
cal responses from those predicted by conventional, macroscopic continuum theory. For example,
nanocrystalline metals display an inverse Hall-Petch effect whereby the strength of the material
decreases with decreasing grain size. The origin of this effect is believed to be a change in defor-
mation mechanisms from dislocation motion across grains and pileup at grain boundaries at mi-
croscopic grain sizes to rotation of grains and deformation within grain boundary interface regions
for nanostructured materials. These rotational defects are represented by the mathematical concept
of disclinations. The ability to capture these effects within continuum theory, thereby connecting
nanoscale materials phenomena and macroscale behavior, has eluded the research community.

The goal of our project was to develop a consistent theory to model both the evolution of
disclinations and their kinetics. Additionally, we sought to develop approaches to extract contin-
uum mechanical information from nanoscale structure to verify any developed continuum theory
that includes dislocation and disclination behavior. These approaches yield engineering-scale ex-
pressions to quantify elastic and inelastic deformation in all varieties of materials, even those that
possess highly directional bonding within their molecular structures such as liquid crystals, cova-
lent ceramics, polymers and biological materials. This level of accuracy is critical for engineering
design and thermo-mechanical analysis is performed in micro- and nanosystems. The research
proposed here innovates on how these nanoscale deformation mechanisms should be incorporated
into a continuum mechanical formulation, and provides the foundation upon which to develop a
means for predicting the performance of advanced engineering materials.
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Chapter 1

Introduction
Principal Authors: Jonathan A. Zimmerman and Douglas J. Bammann

Materials with nanoscale-sized characteristic structures and defects exhibit significantly differ-
ent mechanical responses from those predicted by conventional, macroscopic continuum theory.
For example, nanocrystalline metals display an inverse Hall-Petch effect [181, 48] whereby the
strength of the material decreases with decreasing grain size. In these materials, interface regions
between grains become critical as rotation of the grains becomes a dominant mode of deforma-
tion. These rotational defects are represented by the mathematical concept of partial disclinations,
include low and high angle grain boundaries and twin boundaries, and affect mechanical as well
as thermal and electromagnetic properties of the material they reside in. Disclinations are internal
sources of high elastic stresses. As such, the ability to incorporate these effects within continuum
theory, thereby connecting nanoscale materials phenomena with macroscale behavior, has become
vitally important to predict the reliability of nanosystems.

This report presents the accomplishments of a Laboratory Directed Research and Development
(LDRD) project focused on the construction of a consistent theory to model both the evolution and
kinetics of disclinations. Kinematics, balance laws and thermodynamic restrictions are consid-
ered for a deforming crystalline material containing distributions of dislocations and disclinations.
Structural information attributed to these nanoscale defects contributes to the formulation contain-
ing degrees of freedom that express deformation at the macro- and microscopic regimes. Disclina-
tions are essential mathematical constructs for modeling grains and grain boundaries in polycrys-
talline materials as they represent rotational defects and sources of incompatibility in a materials
deformation. An example of a disclination is shown in Figure 1.1. When grain sizes are reduced
to the nanometer scale, rotation of the grains and deformation within the grain boundaries become
the dominant modes of deformation[143, 207]. These relative rotations between grains result in
the formation of defect structures different from those observed at macroscopic levels, affecting
mechanical as well as thermal and electromagnetic properties. Non-equilibrium grain boundaries
in nanocrystalline materials that were processed using large plastic deformations contain a high
density of defects in their structure resulting in excess energy and long-range elastic fields. These
elastic stresses are a result of large distortions and dilatations near the grain boundaries that con-
tain dislocations with Burgers vectors both normal and tangential to the grain boundary as well
as joint disclinations in triple junctions. For example, the misorientation boundary between two
grains or cells can be represented either by a series of geometrically necessary dislocations or
by a disclination. In particular, a triple point, the intersection of 3 grains is most appropriately
modeled as a disclination. In Figure 1.2, a 100 nm grain is depicted as elastically distorted zones
several nanometers thick near the grain boundaries while the center of the grains is essentially
a perfect crystal. These distortion zones have been clearly observed using transmission electron
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Figure 1.1. From [13]: Soft flux line lattice in a type-II super-
conductor showing a minus-60 wedge disclination.

microscopy (TEM) and high-resolution electron microscopy (HREM) techniques, as shown in Fig-
ure 1.3 for a nanocrystalline Al-Cu-Zr alloy. Figure 1.3 also shows how the severely deformed
microstructure compares with an annealed one. While a granular type structure with high angle
grain boundaries is observed for both cases, the severely deformed image shows features consistent
with non-equilibrium grain boundaries.

As an effort to better understand and characterize these nanoscale mechanisms, we under-
took the development of a material manifold model endowed with structure to accommodate ob-
served additional degrees of freedom in the deformation modes. This effort addresses the need
for methodologies that bridge nanoscale phenomena to macroscale behavior. A rotational com-
ponent is added to the elastic-plastic decomposition of the deformation gradient in order to admit
disclinations. At the micro-level, an affine connection describing spatial variations in the stretch
and rotation of a triad of lattice vectors is introduced, consisting of contributions from the macro-
scopic lattice deformation field and micropolar degrees of freedom capturing the additional local
rotations due to disclinations. State variables representing geometrically necessary dislocations
and disclinations will be directly obtained from the kinematics as torsion and curvature, respec-
tively. Thermodynamic stresses conjugate to the internal variables (defect densities) are required to
satisfy mesoscopic linear and angular momentum balance laws. In addition, the thermodynamics
is carefully formulated to properly account for the configurational nature of the internal stresses.
Evolution equations are developed for the rates of inelastic deformations, microrotations and in-
ternal variables to complete the system. A collaboration between Sandia National Laboratories
and the Georgia Institute of Technology was established to develop a small strain formulation that
simplifies the system of differential equations characteristic of a finite deformation theory. This
system was implemented into a finite element code.

There has been a recent resurgence of research in the area of continuum dislocation the-
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Figure 1.2. Adapted from [240]: Schematic representation of
material having a mean grain size of about 100 nm. Triangles of
different orientations and size represent disclinations of different
magnitudes and rotations.

Figure 1.3. From [240]: TEM micrographs of a Al-4%Cu-
0.5%Zr alloy after severe plastic torsional straining (left) and after
additional annealing for 160C for 1 hour (right).
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ory and strain gradient plasticity. Most of this work introduced gradients into the hardening or
yield strength. Complete thermodynamic internal state variable theories incorporating the contin-
uum representation of geometrically necessary dislocations have been proposed by Gurtin[106],
Bammann[25], and Svendsen[230], among others. These theories did not address the additional
kinematic degrees of freedom and balance laws required to describe rotational defects such as
disclinations. It is critical to have a consistent thermodynamic theory in which these degrees of
freedom correspond to the internal state variables and the associated configurational forces satisfy
smaller length scale momentum balances. Our work presented here is an attempt to develop such
a theory.

To aid in the development of both our finite deformation and small strain theories, we per-
formed molecular dynamic (MD) simulations to examine the modes of deformation and microstruc-
ture evolution in single crystal and nanocrystalline metals. Connection between the atomic scale
models and continuum theories is done by the derivation and use of expressions that extract contin-
uum mechanical information from atomistic simulations. This information consists of continuum
theory variables such as stress, deformation gradient, strain, rotation and lattice curvature. The
latter two of these quantities can be connected to dislocation and disclination densities. These
engineering-scale expressions possess validity for a variety of different materials, even those that
possess highly directional inter-molecular bonding such as covalent ceramics and polymers. Ex-
pressions to quantify continuum variables in atomistic simulation have been previously developed
for standard continuum theories[257] in which inter-atomic bonding is assumed pair-wise in na-
ture. Delph has attempted the extension of these expressions to materials with more complex
bonding[59], although inconsistencies in the momentum and energy balance laws exist for the
derivation presented. Recent papers by Zhou and McDowell[254] and by Chen and Lee[34] have
presented expressions for an elastic, micropolar continuum. However, these efforts use ill-defined
functions to represent fields within a continuum, and do not admit the possibility of state variables
to quantify nanoscale defects that spawn plastic behavior. The derivation of expressions that con-
nect atomistically inspired expressions to plastic deformation state variables has never before been
attempted, and our efforts contribute a worthwhile starting point for such an endeavor.

Ultimately, our goal was to develop our manifold model to a sufficient state as comparisons
could be made with existing experimental data[119] on nanocrystalline materials and thin films
to determine the applicability of the continuum model at these very small length scales. While
this degree of development was not accomplished in this project, we have nonetheless completed
a body of work that will assist model developers to achieve such a goal at some point in the future.
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Chapter 2

Deformation Gradients for Continuum
Mechanical Analysis of Atomistic
Simulations
Principal Authors: Jonathan A. Zimmerman, Douglas J. Bammann and Hua-
jian Gao

In this chapter, we present an expression developed for calculating an atomic-scale deformation
gradient within atomistic simulations. This expression is used to analyze the deformation fields for
a one-dimensional atomic chain, a biaxially stretched thin film containing a surface ledge, and
a FCC metal subject to indentation loading from a nanometer-scale indenter. The analyses pre-
sented show that the metric established here is consistent with the continuum mechanical concept
of deformation gradient (which is known to have a zero curl for compatible deformations) in most
instances. However, our metric does yield non-zero values of curl for atoms near loaded geomet-
ric inhomogeneities, such as those that form the ledges themselves and those beneath or adjacent
to the indentation contact region. Also, we present expressions for higher order gradients of the
deformation field and discuss the requirements for their calculation. These expressions are neces-
sary for linking atomistic simulation results with advanced continuum mechanics theories such as
strain gradient plasticity, thereby enabling fundamental, atomic-scale information to contribute to
the formulation and parameterization of such theories.

2.1 Introduction

Atomistic simulation is a useful method for studying material science phenomena. Examination
of the state of a simulated material and the determination of its mechanical properties is accom-
plished by inspecting the stress and strain (deformation) fields within the material. However, these
concepts have been proven difficult to define in a physically reasonable manner at the atomic
scale. While much has been done to establish expressions for stress in the framework of atomistics
[41, 159, 160, 121, 238, 109, 148, 38, 49, 252, 259], far less has been done to properly define an
atomic-scale deformation gradient, which is used to determine states of strain at large deformation.

Continuum mechanics [153, 156, 183] describes the finite deformation of a body from a refer-
ence, or material configuration, where a point on the body is located by a vector X = {X1,X2,X3}, to
some current, or spatial configuration, in which the same point is now located by a new vector x =
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{x1,x2,x3} which is a function of the material coordinate and time, x = x(X, t) = x(X1,X2,X3, t).
x(X, t) is often referred to as a mapping from the material configuration to the spatial one. The
derivative of this deformation is known as the deformation gradient,

F =
∂x
∂X

(2.1)

For the remainder of this work, we choose to work in index notation rather than the vector notation
used above. Hence,

FiI =
∂xi

∂XI
, (2.2)

where lower case Roman letters (i) are used to refer to coordinate components of spatial quantities
and upper case Roman letters (I) are used to refer to coordinate components of material quantities.

In order to determine the stretch of the differential length segment with respect to material
coordinates, (2.2) is re-cast as

dxi = FiIdXI. (2.3)

From this relation, the length of the infinitesimal vectors dx and dX are ds =
√

dxidxi and dS =√
dXIdXI , respectively. A measure of stretch for this differential length segment is given by ` ≡
{ds}2−{dS}2, equal to 2EIJdXIdXJ with respect to the material configuration where EIJ is known
as the material or Lagrangian strain tensor and is

EIJ =
1
2

(FiIFiJ−δIJ) . (2.4)

Alternatively, this stretch can be expressed with respect to spatial coordinates, ` = 2ei jdxidx j,
where ei j is known as the spatial or Eulerian strain tensor,

ei j =
1
2

(
δ i j−F−1

Ii F−1
I j

)
, (2.5)

and F−1 is the inverse of F (i.e. F ·F−1 = 1). It is realized that in the limit of small strains E and e
are approximately equal to each other and are represented by the small strain tensor εεε where

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
(2.6)

and u = x−X.

Some efforts have been made to quantify the deformation gradient at the atomic scale. Kruyt
and Rothenburg developed a simple expression for an average displacement gradient tensor ( ∂u

∂X =
F− 1) for two-dimensional regions in the simulation of granular materials [134]. While their ex-
pression was both useful and easy to compute, it is not apparent how to generalize their expression
to three dimensions for non-granular materials. Sengupta et al. [212] developed an expression
based on quantifying a displacement field in the vicinity of an atom and then calculating deriva-
tives based on finite difference schemes. However, they caution that their definition is applicable
only within perfect crystals. Alternative expressions for materials with defects, or even how their
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definition behaved in the presence of such defects, were not considered. An expression for dis-
placement gradient was also developed by Inoue et al. [120], and later used by Jin and Yuan [122],
to calculate a discrete version of the J-Integral, the energetic driving force for crack propagation.
Also interested in developing a discrete form of the J-Integral expression, Nakatani et al. [172]
used the derivative of a continuous weighting function to selectively include atomic displacement
information in the determination of a displacement gradient field.

Concurrently, Horstemeyer and Baskes [115] and Zimmerman [256] developed similar expres-
sions that perform a least squares analysis of the gradient of the deformation field local to an atom.
Horstemeyer et al. used their expression as one of the tools to perform a multiscale analysis of
fixed-end simple shear [116], while Zimmerman performed limited analysis of dislocation nucle-
ation at crystal surface ledges [256].

While many of these prior efforts have been notable, none have investigated the issue of com-
patibility of the deformation field. In finite deformation theory, this can be expressed by the condi-
tion that the curl of the deformation gradient (with respect to the material frame) must equal zero:
F×∇ = ∂FiK

∂XM
εKMJ = 0, where εKMJ is the permutation tensor defined as follows:

εKMJ =


+1 when K, M, J are 1, 2, 3 or an even permutation of 1, 2, 3,

−1 when K, M, J are an odd permutation of 1, 2, 3, e.g. 2, 1, 3
0 when any two indices are equal.

(2.7)

Recently, Steinmann et al. [224] have considered this issue indirectly by examining when de-
formations transition to non-affine, thereby violating the Cauchy-Born rule [118, 29]. While Stein-
mann et al. do not define or use a local deformation gradient, they do quantify this transition using
a standard deviation for variance from deformation predicted by the Cauchy-Born rule (i.e. homo-
geneous deformation), defined for the entire atomic system. Their primary result is that this metric
signifies a loss of validity of the Cauchy-Born rule for the same state of deformation as predicted
by examining the determinant of the acoustic tensor.

In this chapter, we expand on the work done in [256] and present an expression for evaluating an
atomic-scale deformation gradient. Further, we show analytic and simulation examples that char-
acterize the behavior of our expression. In particular, we examine the cases of a one-dimensional
atomic chain, dislocation nucleation at a crystal surface ledge due to an applied biaxial stretch, and
nanoindentation. We also present expressions for higher order gradients of the deformation field
and discuss the requirements for calculating them.

2.2 Formulation of Atomic-Scale Deformation Gradient

While the differential relation of equation (2.3) is exact in the limit of infinitesimal vector segments,
i.e. dxi→ 0 and dXI → 0, we note here that in the limit of finite lengths it is the first term in the
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Taylor expansion

∆xi = FiI∆XI +
1
2

HiKL∆XK∆XL + · · · , (2.8)

where HiKL is the mixed second order derivative ∂ 2xi
∂XK∂XL

. Nevertheless, we use this approximation
and note that the smallest length that can be measured is the distance separating neighboring atoms,
i.e. ∆x→ xαβ =

∣∣∣xαβ

∣∣∣, where β is a nearest neighboring atom to atom α . For most crystals, a given
atom has n nearest neighbors that are equidistant from the atom if the crystal is in its equilibrium
structure. In this notation, xαβ is the vector connecting atoms α and β in the current configuration.
Similarly, Xαβ is this vector in the reference (undeformed) configuration. These expressions can
be used within the finite length limit of (2.3) to produce

xαβ

i = FiIX
αβ

I . (2.9)

Equation (2.9) can be rearranged to

xαβ

i −FiIX
αβ

I = 0. (2.10)

While this relationship is exact for an atom α and one of its neighbor β , the same tensor F will not
satisfy this expression for all of the nearest neighbors β = 1,2,3, . . . ,n. Hence, we assume that the
components of F will be based on all the nearest neighbors of atom α , and that the right hand side
of equation (2.10) will no longer be zero for each individual atom-neighbor pair, but will differ
from zero by some small error. It will be required that the sum (over all nearest neighbors) of the
squares of these errors,

Bα
i =

n

∑
β=1

(
xαβ

i −Fα
iI Xαβ

I

)2
, (2.11)

be minimized by some choice of Fα :

∂Bα
i

∂Fα
iM

= 0 , ∀ i and M (2.12)

Notice that we now use the superscript α to denote that each deformation gradient is associated
with a particular atom and is determined using the inter-atomic spacings between that atom and its
neighbors. Substitution of (2.11) into (2.12), and performing the differentiation, one obtains

n

∑
β=1

(
xαβ

i Xαβ

M −Fα
iI Xαβ

I Xαβ

M

)
= 0. (2.13)

This equation can be simplified and rearranged to produce

ω
α
iM = Fα

iI η
α
IM, (2.14)

where

ω
α
iM ≡

n

∑
β=1

xαβ

i Xαβ

M , (2.15)

26



and

η
α
IM ≡

n

∑
β=1

Xαβ

I Xαβ

M . (2.16)

Equation (2.14) can be manipulated to define the atomic-scale deformation gradient as

Fα
iI = ω

α
iM (ηα)−1

MI (2.17)

This expression is a mean-value deformation gradient, which can be used in the earlier equations
to estimate measures of strain.

In reflecting on this derivation, we take note of a few necessary conditions that must be satisfied
in order for equations (2.15) - (2.17) to be valid. First, since the deformation gradient tensor has
9 independent components, an atom in a three-dimensional system must have, at a minimum, 3
neighbors. Second, in order for ηηηα to be invertible, it must be the case that these neighbors span
three-dimensional space, i.e. the atom and its nearest neighbors are neither coplanar nor collinear.
This makes sense from a physical perspective as it would be impossible to define deformation in
a direction along with no neighbors exist in the reference configuration. However, it can also be
proven as follows: ηηηα will be invertible if it can be shown that it is positive-definite, i.e. for any
arbitrary, non-zero vector V, V ·ηηηα ·V > 0. Using equation (2.16),

V ·ηηηα ·V =
n

∑
β=1

VIX
αβ

I Xαβ

M VM

=
n

∑
β=1

yαβ yαβ

=
n

∑
β=1

y2
αβ

,

where yαβ = Xαβ ·V. Since this sum is a sum of squares, then we can conclude that ηηηα is at least
positive semi-definite, i.e. V ·ηηηα ·V≥ 0. Clearly this quantity can only equal zero for a non-zero
vector V if Xαβ ·V for all neighbors β . As long as the set of neighbor vectors

{
Xαβ

}
spans

three-dimensional space in a non-coplanar arrangement, this condition is never satisfied, proving
that ηηηα is positive definite and hence invertible. It is also clear that the condition Xαβ ·V = 0 can
be satisfied if the atom and its nearest neighbors are either collinear or coplanar. In such instances,
a one or two-dimensional analog to equations (2.15) - (2.17) could be constructed, respectively.

It can be easily shown that equations (2.15) - (2.17) are exact for the case of a homoge-
neously applied deformation. For such a situation, xαβ

i = AiJXαβ

J , where AiJ is a constant ten-
sor. Hence, ωα

iM = AiJ ∑
n
β=1 Xαβ

J Xαβ

M = AiJηα
JM. Substitution of this expression into (2.17) yields

Fα
iI = AiJηα

JM (ηα)−1
MI = AiJδJI = AiI .

An advantage of this formulation over other more simple estimates of strain is that one can
take into account that atomic lattice positions in a reference (i.e. strain-free) state are not always
straightforward. Such is the case for geometric irregularities (e.g. voids, corners, and ledges) and
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the effect of surface relaxation. In these cases, equilibrium bond lengths are not identical for all
atoms, and individual reference positions must be known for an accurate estimate of strain. This
concern will be revisited in a later section.

This formulation was first presented in [256], and is similar to the one developed concurrently
by Horstemeyer and Baskes [115]. In their work, Horstemeyer and Baskes included a weighting
function within their expressions that are analogous to (2.15) and (2.16). Our expressions can be
thought of as a specific choice of weighting function, that of the unit step defined within a region
that only includes an atom’s nearest neighbors, and equals zero for the neighbor shells beyond
the nearest one. From these early efforts [115, 116], it was not clear that the inclusion of such a
weighting function carries any benefit for other choices of functional form, nor was it known how
significantly the choice of functional form affects the resulting calculated deformation gradient.
Recently, Gullet et al. [101] have revisited this issue and performed calculations to assess how the
functional form and cutoff radius of the weighting function affects the computed strains. They
conclude that both of these factors affect the value of computed strain (both Lagrangian/Green
and Eulerian/Almansi tensors given by (2.4) and (2.5), respectively), particularly in regions of
localization where material defects such as dislocations have formed and/or propagated through.
While Gullet et al. do examine the sensitivity of their calculated strain tensors relative to the
weighting function cutoff radius and relative to the size of the localization region, they do not
examine the issue of compatibility to confirm that their deformation gradient measure is consistent
with continuum mechanics. This issue will be examined in detail later in this chapter.

As discussed in [256], application of this definition of deformation gradient is straight-forward
for crystals of any lattice type that are describable by a primitive unit cell, i.e. a lattice in which
the basic atomic cell that is replicated to create the full lattice structure contains a single atom.
However, not all naturally occurring lattices have a primitive unit cell. For example, the diamond
cubic lattice does not have a primitive unit cell, but rather is constructed from two interpenetrating
face-centered cubic (FCC) cells. These sub-lattices can displace relative to each other, giving three
extra degrees of freedom (representing a rigid body translation) which must be determined in order
to fully describe the deformation of the lattice [127, 231]. That aside, each sub-lattice does have
a deformation gradient that can be determined by applying equations (2.15) - (2.17) only to the
second nearest neighbors of an atom.

2.3 Expressions for Higher-Order Gradients

Before we discuss the issue of compatibility of our atomic-scale deformation gradient, or examine
numerical simulations in which this expression is used to give us insight on materials behavior, we
pause to consider the possibility of expressions for higher-order gradients of the deformation field
for an atomistic system. As mentioned above, the differential expansion shown in equation (2.3)
is exact only in the limit of infinitesimal vector lengths, i.e. dxi→ 0 and dXI → 0. For the finite
lengths of inter-atomic spacings, we acknowledge that our formulation of an atomic deformation
gradient used only the first term in a longer Taylor series expansion. We now reconsider using both
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the first and second term in this expansion to describe our atomistic deformation field, i.e.

xαβ

i = FiIX
αβ

I +
1
2

HiKLXαβ

K Xαβ

L . (2.18)

where HiKL represents the mixed second order derivative ∂ 2xi
∂XK∂XL

. Sunyk and Steinmann used
such an expansion to describe atomic-scale deformation in an effort to examine the validity of
the Cauchy-Born rule [229]. In that work, they used the symbol G to represent the second order
derivative. However, G is commonly used to denote displacement gradient, defined by the quantity
F−1. To avoid confusion, we therefore use the symbol H.

As before, we recast (2.18) such that the right hand side equals zero:

xαβ

i −FiIX
αβ

I − 1
2

HiKLXαβ

K Xαβ

L = 0 (2.19)

Again, we assume that the components of F and H will be determined using neighbors of atom α

such that the right hand side, while not equal to zero, will be minimized. Hence,

Bα
i =

n

∑
β=1

(
xαβ

i −Fα
iI Xαβ

I − 1
2

Hα
iKLXαβ

K Xαβ

L

)2

, (2.20)

and
∂Bα

i
∂Fα

iM
= 0 , ∀ i and M (2.21)

∂Bα
i

∂Hα
iST

= 0 , ∀ i, S and T (2.22)

Substitution of (2.20) into (2.21) yields the equation,

n

∑
β=1

(
xαβ

i Xαβ

M −Fα
iI Xαβ

I Xαβ

M − 1
2

Hα
iKLXαβ

K Xαβ

L Xαβ

M

)
, (2.23)

which can be simplified to

ω
α
iM−Fα

iI η
α
IM−

1
2

Hα
iKLξ

α
KLM = 0, (2.24)

where ωωωα and ηηηα are defined in equations (2.15) and (2.16), respectively, and ξξξ
α is defined by

the relation

ξ
α
KLM =

n

∑
β=1

Xαβ

K Xαβ

L Xαβ

M . (2.25)

Similarly, substitution of (2.20) into (2.22) yields the equation,

n

∑
β=1

(
xαβ

i Xαβ

S Xαβ

T −Fα
iI Xαβ

I Xαβ

S Xαβ

T − 1
2

Hα
iKLXαβ

K Xαβ

L Xαβ

S Xαβ

T

)
= 0, (2.26)

which too can be simplified to the equation

ν
α
iST −Fα

iI ξ
α
IST −

1
2

Hα
iKLϕ

α
KLST = 0, (2.27)
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where ξξξ
α is defined in (2.25),

ν
α
iST =

n

∑
β=1

xαβ

i Xαβ

S Xαβ

T , (2.28)

and

ϕ
α
KLST =

n

∑
β=1

Xαβ

K Xαβ

L Xαβ

S Xαβ

T . (2.29)

To solve equations (2.24) and (2.27), we first multiply (2.24) by (ηηηα)−1,

ω
α
iM (ηα)−1

MJ−Fα
iJ −

1
2

Hα
iKLξ

α
KLM (ηα)−1

MJ = 0, (2.30)

and then isolate the expression for Fα
iJ ,

Fα
iJ = ω

α
iM (ηα)−1

MJ−
1
2

Hα
iKLξ

α
KLM (ηα)−1

MJ . (2.31)

We then use this equation with equation (2.27):

ν
α
iST −

[
ω

α
iM (ηα)−1

MI −
1
2

Hα
iKLξ

α
KLM (ηα)−1

MI

]
ξ

α
IST −

1
2

Hα
iKLϕ

α
KLST = 0. (2.32)

Grouping the terms that contain Hα , we obtain

ν
α
iST −ω

α
iM (ηα)−1

MI ξ
α
IST +

1
2

Hα
iKL

[
ξ

α
KLM (ηα)−1

MI ξ
α
IST −ϕ

α
KLST

]
= 0. (2.33)

By rearranging terms and taking the inverse of the fourth order matrix

ζ
α
KLST ≡

[
ϕ

α
KLST −ξ

α
KLM (ηα)−1

MI ξ
α
IST

]
, (2.34)

we finally obtain
Hα

iKL = 2
[
ν

α
iST −ω

α
iM (ηα)−1

MI ξ
α
IST

]
(ζ α)−1

T SLK . (2.35)

Substitution of this expression into equation (2.31) yields

Fα
iJ = ω

α
iM (ηα)−1

MJ−
[
ν

α
iST −ω

α
iM (ηα)−1

MI ξ
α
IST

]
(ζ α)−1

T SLK ξ
α
KLM (ηα)−1

MJ . (2.36)

Clearly, this expression for Fα is significantly more computationally intensive to evaluate than the
earlier expression given in equation (2.17). Also, it is probably not the case that only nearest neigh-
bors will be sufficient to determine all of the components of Fα and Hα . Combined, these tensors
contain 9 + 27 = 36 values to be solved for in three dimensional space. Given this, no less than
12 neighbors are needed. This extends out past the nearest neighbor shell in most lattices, and cer-
tainly includes non-nearest neighbors for atoms near geometric inhomogeneities such as surfaces,
edges and corners. In contrast, only 3 neighbors are needed for the expression in equation (2.17).
As before, certain arrangements of atoms may prohibit the existence of inverse transformations for
tensors ηηηα and ζζζ

α in three dimensions such as neighbors that are strictly collinear or coplanar to
atom α . For such cases, one and two dimensional analogs to these expressions can be derived.
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While difficult to compute, the usefulness of the expressions presented in this section is pro-
found. Calculation of higher order gradients enables atomistic simulation results to be used in the
formulation and parameterization of advanced continuum theories such as strain gradient plasticity
(for example, the theory by Han et al. [108]). In their work [229], Sunyk and Steinmann expand
the hyperelastic strain energy density function to be functions of both the F and H, and derive bal-
ance laws that include work conjugates of both kinematic variables. While their goal is to expand
the Cauchy-Born rule to include inhomogeneous deformations, a clear next step would be to use
locally-calculated values of these deformation gradients to examine consistency between atomistic
simulation and their higher order continuum theory, and to characterize deviations that may occur
due to the creation of material defects.

Before leaving this section, we again consider the case of a homogeneously applied deforma-
tion, xαβ

i = AiJXαβ

J , where AiJ is a constant tensor. In this case, ωα
iM = AiJηα

JM and να
iST = AiJξ α

JST .
Hence,

Hα
iKL = 2AiJ

[
ξ

α
JST −η

α
JM (ηα)−1

MI ξ
α
IST

]
(ζ α)−1

T SLK (2.37)

= 2AiJ [ξ α
JST −ξ

α
JST ] (ζ α)−1

T SLK (2.38)
= 0, (2.39)

and, as before, equation (2.36) simplifies to Fα
iJ = AiJ .

2.4 Compatibility of the Atomic-Scale Deformation Gradient

Given the significant cost of calculating both the deformation gradient Fα and the higher order
gradient Hα as discussed in the previous section, we choose to return to our original expressions
given in equations (2.15) - (2.17) when examining the issue of compatibility. In standard contin-
uum mechanics theory [153], the deformation gradient F is based on an underlying displacement
field u: F = ∂x

∂X = ∂ (X+u)
∂X = 1 + ∂u

∂X . As such, the nine components of F are not independent,
but are actually interrelated because they are derived from the 3 components of u. This condition
is referred to as compatibility. Mathematically, compatibility is enforced by realizing that, as a
gradient, F must comply with the condition that the curl of any gradient is zero, i.e. ∂FiK

∂XM
εKMJ = 0.

In order to calculate the curl of our atomic-scale deformation gradient, we need to determine the
components of its gradient, Hα

iJK = ∂Fα
iJ

∂XK
. As with the derivation of Fα in section 2.2, we assume

that we can approximate this exact differential with the first term of a Taylor series expansion.
Hence,

Fαβ

iJ ≡ Fα
iJ −Fβ

iJ = Hα
iJKXαβ

K . (2.40)

As before, we move all terms to the left hand side and determine Hα by minimizing the square of
an error function:

Bα
iJ =

n

∑
β=1

(
Fαβ

iJ −Hα
iJKXαβ

K

)2
(2.41)

31



Thus,
∂Bα

iJ
∂Hα

iJQ
= 0 → ϖ

α
iJQ = Hα

iJKη
α
KQ, (2.42)

and
Hα

iJK = ϖ
α
iJQ (ηα)−1

QK (2.43)

where

ϖ
α
iJQ ≡

n

∑
β=1

Fαβ

iJ Xαβ

Q . (2.44)

Equation (2.43) is very similar in form to (2.17), with ϖϖϖα taking the place of ωωωα . Similar to our
earlier development, we should keep in mind that the availability of neighbors, and the number
used to calculate Hα , will have a direct bearing on both its ability to be determined as well as
its accuracy. Also, for the case of homogeneous deformation, Fα = Fβ and hence Hα = 0. The
components of the curl of Fα can now be estimated using the expression,

ρ
α
iM = Hα

iJKε
α
JKM, (2.45)

where, for a compatible deformation field ρρρα = 0.

In the framework of plasticity theory, it is common to perform a multiplicative decomposition
on the deformation gradient, for example F = FeFp [223, 191, 55, 108]. In this decomposition,
Fp refers to irreversible deformations induced by the creation and motion of material defects. In
metals, the defects considered are dislocations, stacking faults and disclinations and the resulting
deformations are referred to as plasticity (hence, the superscript ‘p’). Fe refers to the reversible de-
formations caused by elastic loading of the material. Separately, Fe and Fp are both incompatible
fields, but together they produce a total deformation gradient that obeys the compatibility condi-
tion. As first done by Steinmann [223], and later clarified by Regueiro and coworkers [191, 55],
non-zero expressions can be developed that relate the curls of Fe and Fp to dislocation density ten-
sors that are properly defined in an intermediate configuration that lies between the material and
spatial ones (i.e. the “space” that is defined through the mapping of Fp from the material frame or
the reverse mapping of (Fe)−1 from the spatial frame).

In continuum plasticity theory, these dislocation density tensors are commonly used as, or
related to, internal state variables that evolve according to an assumed constitutive relation. Hence,
Fe and Fp can be independently determined using a history dependent numerical simulation. It is
not apparent that they can be clearly defined within an atomistic simulation. For that matter, it has
not yet been shown that the compatibility condition itself, ρρρ = F×∇ = 0, is valid at the atomic
scale. In the next section, we present example simulations that examine both the deformation
gradient and its curl.

2.5 Examples

In this section, we evaluate the expressions for Fα (equation (2.17)) and ρρρα (equations (2.43)
and (2.45)) for several atomistic simulations that give rise to inhomogeneous deformation fields.
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Specifically, we first consider a one-dimensional versions of our expressions for an atomic chain.
Then, we examine simulations of dislocation nucleation at a crystal surface ledge (or step) due to
an applied biaxial stretch and of nanoindentation.

2.5.1 One-dimensional atomic chain

Consider an atom α that exists along a one-dimensional atomic chain in the x1 direction and pos-
sesses only two nearest neighbors β and γ such that xγ

1 > xα
1 > xβ

1 . For this case, ωωω and ηηη each
contain only a single component:

ω
α = xαβ

1 Xαβ

1 + xαγ

1 Xαγ

1 (2.46)

η
α = (Xαβ

1 )2 +(Xαγ

1 )2 (2.47)

If we assume that our chain has a uniform atomic spacing in the reference configuration, i.e.
−Xαβ

1 = Xαγ

1 = a0, then

ω
α = a0

(
xαγ

1 − xαβ

1

)
= a0xβγ

1 , (2.48)

and
η

α = 2a2
0. (2.49)

Hence,

Fα =
ωα

ηα
=

xβγ

1
2a0

=
xβ

1 − xγ

1
2a0

. (2.50)

Equation (2.50) is recognized to be the central difference expression of the finite difference method
for a one-dimensional uniform grid. If either neighbors β or γ are missing, i.e. atom α is at the
beginning or end of the chain, then our formula for deformation gradient becomes the forward
or backward difference expression, respectively. The curl is not defined for a one dimensional
analysis; however, we note that the only component of Hα

iJK not automatically equal to zero is for
i = J = K = 1, and that the permutation tensor in (2.45) does equal zero in this instance since
J = K. Hence, all components of ρρρα are equal to zero.

2.5.2 Dislocation nucleation at a crystal surface ledge

The problem of dislocation nucleation from a crystal surface ledge or step was previously examined
by Zimmerman [256], among others, as an explanation for the occurrence of misfit dislocations
observed in thin films. Zimmerman postulated that for a sufficient amount of bi-axial strain exerted
on the film due to lattice mismatch with a substrate material, dislocations would originate from
the surface ledges that naturally arise due to film deposition processes. Zimmerman explored
this possibility using molecular dynamics and energy minimization simulations [256]. Similar
simulations using an energy minimizing conjugate gradient method are presented in this section,
with emphasis placed on characterizing the deformation gradient and curl fields before and after
dislocation emission.
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Figure 2.1 shows an atomic system representative of a nano-scale thin film of copper, as mod-
eled using the embeded atom method (EAM) potential by Voter [243]. The system contains a total
of approximately 56,000 atoms and is constructed such that the horizontal and thickness (out of the
page) directions are 〈110〉 crystal directions and the vertical direction is of the 〈100〉 type. System
dimensions are roughly 179 Å in the horizontal direction, 143 Å in the vertical direction, and 26
Å in the thickness direction. Periodic boundary conditions are used on the horizontal sides and in
the thickness direction. The bottom layer of atoms is constrained against movement in the vertical
direction. On the top (free) surface, atoms have been removed to create a trough that is initially
five atoms wide and spans the thickness dimension. The reference configuration is obtained by per-
forming an energy minimizing molecular static calculation using the Sandia code ParaDyn [201].
Energy minimization is accomplished using a non-linear conjugate gradient algorithm [188]. The
system is then stretched in increments of 0.01% in both the horizontal and thickness directions.
Figure 2.1(a) shows the system just prior to dislocation emission at a stretch of 3.77%, while Fig-
ure 2.1(b) shows the system having two dislocations that have been emitted from the surface ledges
at a stretch of 3.78%. Figure 2.1 has atoms colored according to their value of slip vector, as de-

(a) (b)

Figure 2.1. Cross-sectional view of a biaxially stretched film on
a rigid substrate at (a) 3.77% stretch and (b) 3.78% stretch. Atoms
are colored according to their value of slip vector.

fined in [258] by Zimmerman et al. We note that the emitted dislocations leave behind trails of
atoms that have a slip vector magnitude near the value expected for a partial dislocation in copper,
3.615/

√
6 = 1.476Å.

Figure 2.2 shows the same system with atoms colored according to their value of F11 and F22
before and after dislocation emission. It is observed that the system contains a nearly uniform
state of stretch just prior to dislocation creation (F11 = F33 ≈ 1.0377, F22 ≈ 0.94), and that this
stretch is relieved in the horizontal (1) and vertical (2) directions throughout most of the crystal
once the dislocations have been emitted. This is shown by the majority of atoms going to a darker
shade from Figure 2.2(a) to Figure 2.2(b) (F11 decreases), and going from a lighter shade from
Figure 2.2(c) to Figure 2.2(d) (F22 increases). Strain is not relieved in the thickness (3) direction
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(a) (b)

(c) (d)

Figure 2.2. Cross-sectional view of a biaxially stretched film on
a rigid substrate at (a), (c) 3.77% stretch and (b), (d) 3.78% stretch.
Atoms are colored according to their value of (a), (b) F11 and (c),
(d) F22.

as the Burgers vectors of the emitted dislocations are perpendicular to that direction. It is also
apparent that the stacking faults created by the emitted dislocations leave behind discontinuities in
the deformation gradient field. These discontinuities also exist for the diagonal elements F12 and
F21 of the deformation gradient field, as shown in Figure 2.3.

While this example shows that discontinuities exist in the atomic deformation gradient itself in
the wake of created material defects, the question remains whether a compatible deformation field
still exists and if the atomic scale expression we have derived reflects this. Figure 2.4 shows the 13
and 23 components of the curl tensor ρρρ before and after dislocation emission. These components
are selected due to the two-dimensional nature of our varying deformation gradient field. While
ρ13 and ρ23 are essentially zero before any material defects are created, as expected, they remain
so once dislocations and stacking faults have been created. Further, it is interesting to observe that
the only significantly non-zero values of these variables occurs for atoms that lie near ledges (both
before and after emission), at the system’s top boundary where dislocations were created, and at
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(a) (b)

Figure 2.3. Cross-sectional view of a biaxially stretched film on
a rigid substrate at 3.78% stretch. Atoms are colored according to
their value of (a) F12 and (b) F21.

the bottom boundary where dislocation cores become trapped. The stacking fault itself does not
alter the zero curl of the deformation gradient.

2.5.3 Dislocation nucleation during nanoindentation

A more complex deformation field can be considered by simulating indentation by a nanometer
scale indenter into a metal surface, as has been done by Kelchner et al. [126], Zimmerman et al.
[258] and Rodrı́guez de la Fuente et al. [194], among others. In this section, we examine the
calculated fields of F and ρρρ for the nanoindentation simulations that appear in [194]. In that work,
the authors analyzed the dislocation structures emitted during indentation of a Au(100) crystal
surface by an indenter of radius equal to 40 Å. The system simulated has sides oriented along
〈100〉 directions and is of dimensions 204 Å x 204 Å x 122 Å. Periodic boundary conditions
are used on all four side surfaces, while the bottom surface atoms are held rigidly fixed and the
top surface is free. An external force field is used to emulate the nanoindenter. The indenter is
lowered in displacement increments of 0.1 Å down to a total depth of 7 Å. As before in the surface
ledge simulations, energy minimization is performed after each displacement increment. The EAM
model for Foiles et al. [75] is used for the Au crystal.

Figure 2.5 shows the defect structures that form due to the indentation process. For clarity, only
atoms with appreciable non-zero values of slip vector (> 0.5) are shown. Initially (Figure 2.5(a)),
no discernible defect structure exists beneath the indenter; values of slip vector remain low and
are appreciable only due to the highly deformed state of the material. At an indentation depth
of about 4.2 Å, partial dislocations and stacking faults are created beneath the indenter, shown in
Figure 2.5(b). This structure was found reversible upon elastic unloading of the material. At a
larger indentation depth of 5.8 Å, an extended dislocation structure and stacking faults are created,
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(a) (b)

(c) (d)

Figure 2.4. Cross-sectional view of a biaxially stretched film on
a rigid substrate at (a), (c) 3.77% stretch and (b), (d) 3.78% stretch.
Atoms are colored according to their value of (a), (b) ρ13 and (c),
(d) ρ23.

shown in Figure 2.5(c). This extended structure was analyzed in depth in [194], and was shown
to be the origin of hillocks observed in corresponding experiments using scanning tunneling mi-
croscopy (STM). As noted in that work, this extended structure persists upon elastic unloading of
the material.

Figures 2.6 and 2.7 show cross-sectional views of the crystal at the same amounts of deforma-
tion depicted in Figure 2.5, with atoms colored according to their value of F11 and F33. For this
system, indentation occurs in the−x3 or−z direction. As in the previous section, the deformation
gradient component fields are observed to be discontinuous once material defects have been cre-
ated. These discontinuities are observed within the material beneath the nanoindenter, as well as
at the indentation surface. Due to the three-dimensional nature of the problem, discontinuities are
also present in all components of the deformation gradient. For example, Figure 2.8 shows the sys-
tem at the deformation level reached in Figure 2.5(b). In this figure, it is apparent that the defects
created (partial dislocations and stacking faults) manifest as non-zero values of the off-diagonal
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(a) (b) (c)

Figure 2.5. Atoms with values of slip vector > 0.5 beneath a
nanoindenter: (a) prior to any defects, (b) after emission of (re-
versible) partial dislocation loops, (c) after emission of an (irre-
versible) extended dislocation/hillock structure.

components of the deformation gradient tensor.

Figures 2.9 and 2.10 show cross-sectional and top views, respectively, of the crystal at the same
amounts of deformation depicted in Figure 2.5, with atoms colored according to their value of ρ12.
A few features become apparent from these figures: First, non-zero values of curl are apparent

at all stages of deformation for atoms that lie on the top surface both beneath, and adjacent to, the
contact region with the indenter. Second, the creation of dislocation loops and stacking faults that
intersect the top surface does affect the distribution of non-zero values of curl. It is particularly
interesting to note that the curl fields that are visible before defects are created (Figures 2.9(a) and
2.10(a)) appear to be continuously varying in nature, whereas discontinuities in the curl fields are
present once defects are present. Third, these non-zero values of curl exist only for surface atoms
even once material defects have been created. In particular, the discontinuous fields of deformation
gradient observed in the previous figures do not lead to non-zero values of curl; the curl remains
at near zero levels for atoms in the interior of the simulation region, similar to the surface ledge
simulations in the previous section. These features are consistent among the various components
of ρρρ , as shown in more detail in Figures 2.11 - 2.14.

2.6 Discussion

In section 2.4 we briefly discussed how, in the framework of plasticity theory, it is common for
the deformation gradient to be multiplicatively decomposed into elastic and plastic components,
Fe and Fp respectively. These components are individually incompatible and are used to construct
a dislocation density tensor [223, 191, 55, 108]. For example, Han et al. [108] define the tensor

Ã =
1
Jp

FpCurl Fp = Je (Fe)−1 curl(Fe)−1 , (2.51)
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(a) (b) (c)

Figure 2.6. Cross-sectional view of the nanoindented atomic
system at the deformation states shown in Figures 2.5(a)-2.5(c).
Atoms are colored according to their value of F11.

where Curl Fp = Fp×∇ = Fp× ∂

∂X and curl(Fe)−1 = ∂

∂x × (Fe)−1. This tensor is related to the
Burgers vector b̃ and unit line tangent vector ξ̃ξξ through the relation

Ãdv = ξ̃ξξ ⊗ b̃dl, (2.52)

where dv is an infinitesimal volume element and dl is an infinitesimal line length. In any event,
it would be clearly advantageous to be able to separately quantify Fe and Fp in the course of
analyzing an atomistic simulation.

Our earlier discussion on the meanings of Fe and Fp might lead one to contemplate perform-
ing an unloading simulation to atomistic systems in which defects have already formed, thereby
presumably applying the inverse of the elastic deformation (Fe)−1. Figures 2.15 and 2.16 show
the effect of doing this unloading to the biaxially stretched film and the nanoindented system, re-
spectively. Both figures show that while a discontinuous deformation gradient remains within the
material system once the elastic load has been removed, the resulting deformation is still compati-
ble and produces a zero curl.

This result supports the recent work by Clayton et al. [47], in which these authors propose a
three-term multiplicative decomposition to the deformation gradient,

F = FeFiFp. (2.53)

In this relation, Fe now merely represents the elastic deformation due to external loading whereas
the effect of the dislocations and other defects are now jointly represented by Fi and Fp. Fp cap-
tures the deformation discontinuities introduced through dislocation cores and stacking faults and
Fi contains the elastic deformations created in response to the formation of these discontinuities.
Individually, neither Fi nor Fp are compatible deformation fields, but their product is.

In addition to the issue of multiplicative decomposition of the deformation gradient, our anal-
yses also raises a few interesting questions that merit additional discussion. First, there is some
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(a) (b) (c)

Figure 2.7. Cross-sectional view of the nanoindented atomic
system at the deformation states shown in Figures 2.5(a)-2.5(c).
Atoms are colored according to their value of F33.

(a) (b) (c)

Figure 2.8. Cross-sectional view of the nanoindented atomic sys-
tem at the deformation states shown in Figure 2.5(b). Atoms are
colored according to their value of (a) F12, (b) F13, (c) F32.

uncertainty with regard to the creation and propagation of full dislocations. From a materials sci-
ence perspective, as full dislocations travel through a material, the material left behind possesses
a perfect crystal structure. However, from a mechanics perspective, the reference configuration of
this perfect crystal is unknown; there is no longer a one to one map of the deformation gradient (or
any portion of it) to characteristics of the dislocations that have gone through the material. Hence,
while this material would no longer have defects per se, the atomic-scale deformation gradient
would still show that significant deformation has occurred. This issue also affects the slip vector
calculation (as seen in Figure 2.5(c)), where it is known that atoms bordering planes on which
full dislocations have slipped contain a slip vector consistent with the Burgers vectors of these
dislocations.

Another question raised from our analyses pertains to the role of stacking faults. The figures
in section 2.5 clearly show that although the formation of stacking faults leads to discontinuities
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(a) (b) (c)

Figure 2.9. Cross-sectional view of the nanoindented atomic
system at the deformation states shown in Figures 2.5(a)-2.5(c).
Atoms are colored according to their value of ρ12.

(a) (b) (c)

Figure 2.10. Top view of the nanoindented atomic system at
the deformation states shown in Figures 2.5(a)-2.5(c). Atoms are
colored according to their value of ρ12.

in F, these discontinuities do not produce incompatibilities that prevent the curl of F from van-
ishing. It is assumed that, as for dislocations themselves, elastic fields are created in response to
the formation of stacking faults which restore compatibility of the overall deformation. What is
not clear, however, is how stacking faults contribute to dislocation density tensors (such as the one
shown in equation (2.52)) as such structures no longer have a unit line tangent vector that can be
identified. That stated, it may be possible to construct a meaningful tensor through a combination
of the partial Burgers vector creating the stacking fault with the unit normal vector for the plane
that contains the fault and the characteristic size of the fault region. Determination of these last
two characteristics is not trivial and is deferred for future work.

One final concern raised by our analyses is the accuracy with which derivatives are being cal-
culated. Our approach essentially uses a irregular grid of nearest neighbor positions to perform a
variation of the finite difference method to calculate both Fα , the gradient of the the deformation
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(a) (b) (c)

Figure 2.11. Cross-sectional view of the nanoindented atomic
system at the deformation states shown in Figures 2.5(a)-2.5(c).
Atoms are colored according to their value of ρ22.

(a) (b) (c)

Figure 2.12. Top view of the nanoindented atomic system at
the deformation states shown in Figures 2.5(a)-2.5(c). Atoms are
colored according to their value of ρ22.

field, and Hα , the gradient of Fα . It was observed that the elements of ρρρα , which are combina-
tions of the components of Hα , while approximately equal to zero in general were non-zero in
locations where both a large amount of inhomogeneous deformation occurs and a non-bulk dis-
tribution of nearest neighbors exists. This was found to occur even for deformation states where
no defects had yet been created. It is not clear whether these non-zero values of ρρρα have some
physical significance or a more accurate scheme for approximating derivatives needs to be used
in such regions. One possible way to resolve this issue would be to apply techniques used in
meshless (or mesh-free) simulation frameworks and construct continuous fields for the deforma-
tion/displacement fields. Such fields would automatically satisfy compatibility and comparison
of these fields with those calculated using our expressions would quantify the accuracy of those
expressions and clarify the situations under which our expressions deviate from their continuum
equivalents. This exercise is deferred for future research.
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(a) (b) (c)

Figure 2.13. Cross-sectional view of the nanoindented atomic
system at the deformation states shown in Figures 2.5(a)-2.5(c).
Atoms are colored according to their value of ρ32.

(a) (b) (c)

Figure 2.14. Top view of the nanoindented atomic system at
the deformation states shown in Figures 2.5(a)-2.5(c). Atoms are
colored according to their value of ρ32.

2.7 Conclusions

In this chapter, we have developed an expression for an atomic-scale deformation gradient and
have used it to analyze the deformation fields for a one-dimensional atomic chain, a biaxially
stretched thin film containing a surface ledge, and a FCC metal subject to indentation loading from
a nanometer-scale indenter. The analyses presented shows that the metric established here is con-
sistent with the continuum mechanical concept of deformation gradient (which is known to have a
zero curl for compatible deformations) in most instances. As would be expected, the deformation
gradient expression yields discontinuities for regions of material that contain defects such as partial
dislocations and stacking faults. It has been noticed that non-zero values of curl occur for atoms
near loaded geometric inhomogeneities, such as those that form the ledges themselves and those
beneath or adjacent to the indentation contact region. It is not yet clear whether these non-zero

43



(a) (b)

Figure 2.15. Cross-sectional view of a biaxially stretched film
on a rigid substrate elastically unloaded from a stretch of 3.78%.
Atoms are colored according to their value of (a) F11 and (b) ρ13.

(a) (b)

Figure 2.16. Cross-sectional view of the nanoindented atomic
system elastically unloaded from the deformation state shown in
Figure 2.5(c). Atoms are colored according to their value of (a)
F33 and (b) ρ32.
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values can in some way be correlated to geometric information about the material defects created
during deformation, and more work in this area is being pursued.

Although the concept of the multiplicative decomposition of the deformation gradient within
the context of plasticity theory was discussed and considered, our simulation results show zero
values of curl within material containing defects such as dislocation loops and stacking faults. As
such, it appears that our atomic-scale metric captures the full, compatible deformation field that
the material is subject to. As noted above, the deformation gradient expression itself produces
discontinuities reflective of material that contain defects such as partial dislocations and stacking
faults. These discontinuities would also exist for regions through which a full dislocation has
traveled and no stacking fault or other defect remains [256]. In both instances, it may be possible
to use geometric information about the material defects created (such as the Burgers vectors as
quantified by the slip vector) to isolate the ‘plastic’ component of the deformation gradient Fp,
thereby enabling Fe to also be determined. However, it is not yet apparent how to perform this
decomposition and further work in this area is also warranted.
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Chapter 3

A Material Frame Approach for Evaluating
Continuum Variables in Atomistic
Simulations
Principal Authors: Jonathan A. Zimmerman, Reese E. Jones and Jeremy A.
Templeton

In this chapter, we present a material frame formulation similar to the spatial frame formula-
tion developed by Hardy, whereby expressions for continuum mechanical variables like stress and
heat flux are derived from atomic scale quantities intrinsic to molecular simulation. This formula-
tion is ideally suited for developing an atomistic-to-continuum correspondence for solid mechanics
problems. We derive expressions for the 1st Piola-Kirchhoff (P-K) stress tensor and for the mate-
rial frame-based heat flux vector. Molecular dynamics simulation results for various scenarios are
used to compare the stress expression with both the system virial and the Cauchy stress expression
developed by Hardy. Our results show that while the P-K stress tensor appears to be missing the ki-
netic contribution present in the Cauchy expression, it nonetheless represents a full and consistent
measure of stress. Our derivation also yields an expression for the heat flux vector, which likewise
lacks the kinetic contribution appearing in its spatial frame counterpart. We also present an ex-
panded formulation to define continuum variables from micromorphic continuum theory, which is
suitable for the analysis of materials represented by directional bonding at the atomic scale.

3.1 Introduction

Continuum theory has been used for decades to analyze and predict the mechanics of materials and
structures. However, as technologies shrink to the nanometer range, quantities such as stress and
strain become ill defined and the application of continuum mechanics in nanomechanical frame-
works becomes suspect. This brings into question whether the traditional design tools used for
manufacturing can be applied to micro or nano electro-mechanical systems. And while atomic
scale modeling and simulation methods, e.g. molecular dynamics, have provided a wealth of in-
formation for such systems, the use of such methods has not been standardized. Certainly, the use
of continuum mechanics methods would be invaluable provided that clear connections between
nanoscale mechanics and engineering scale analysis can be made.

The development of definitions for continuum variables that are calculable within an atomic
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system has a long and rich history. In the late 19th century, Clausius [41] and Maxwell [159, 160]
simultaneously developed the virial theorem (VT) to define the stress applied to the surface of a
fixed volume containing interacting particles and a non-zero temperature. Since these initial efforts,
there have been many subsequent works to improve on this definition [121, 238, 208, 109, 148,
197, 38, 49, 254, 252, 168, 259, 253, 169, 248], most of which have occurred in the last quarter of
the 20th century and have continued into the 21st century. The articles cited here have addressed
important issues such as the consistency of stress expressions with the mechanical concept of a
force acting on a unit area, the validity of an atomic stress based on the VT, and the role of both
spatial and time averaging. For brevity, we refer the reader to the discussions in [259] and [248]
for more information.

Among these efforts is the notable work by Hardy and colleagues [109, 110, 111]. Hardy’s
formalism uses a finite valued and finite ranged localization function in lieu of the Dirac delta
function to establish a self-consistent manner of distributing discrete atomic contributions to ther-
momechanical fields. While the range and form of the localization function can be selected arbi-
trarily, the resulting expression for, say, the stress has a certain amount of regularity with varying
sized support regions given reasonable choices for the form. Hardy’s original formulation is based
on the Eulerian or spatial configuration; localization volumes are essentially control volumes fixed
in space that matter occupies at a particular time. Hence, Hardy’s expressions for stress and heat
flux contain both “potential” (based on derivatives of potential energy) and “kinetic” (based on
the flux of momentum or energy through the localization volume) terms. The validity of kinetic
contributions to stress has been an issue of some contention, and has been examined in detail by
such authors as Zhou [253] and Murdoch [169].

An alternative approach that obviates the separation of potential and kinetic contributions to
stress is to construct a similar formulation to Hardy’s in the Lagrangian or material frame. In the
material frame, the relevant stress measure is the 1st Piola-Kirchhoff tensor P, which represents
the amount of current force exerted on a unit area as measured in the reference configuration.
Expressions to calculate P have been developed by Andia et al. [51, 50, 11, 12]; however, their
definition is constructed as a single value representative of the average stress state for a cell with
periodic boundary conditions i.e. a full system average. In addition, Andia et al. make the dis-
tinction between internal and external forces, separating the interactions between atoms within the
cell and the interactions between atoms with “ghost” atoms located across the periodic boundaries.
This distinction is not made in many of the approaches mentioned earlier, and application of this
concept is not straightforward for the localization volume framework of Hardy.

Here, we present a material frame formulation similar to the one developed by Hardy for the
spatial frame. This formulation is ideally suited for developing an atomistic-to-continuum cor-
respondence for solid mechanics problems, although it does implicitly rely on a mapping from
reference to current positions of what we define as material points. We derive an expression for
P-K stress as well as one for heat flux. We use molecular dynamics simulations to verify our stress
expression, and examine its consistency with respect to the relationship between Piola-Kirchhoff
and Cauchy stresses known from continuum theory. Our results will show that while the P-K
stress tensor seems to be missing the kinetic contribution that appears in the Cauchy expression,
it nonetheless represents a full and consistent measure of stress. This consistency will be proven
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using both mathematical arguments and a numerical example showing that the P-K and Cauchy
values are nearly identical even though the kinetic portion of the Cauchy stress is a significant
fraction of the total value. As a further extension of this work, we also present an expanded formu-
lation to define continuum variables from micromorphic continuum theory. This extension relies
crucially on the Lagrangian framework we develop and shows that our formulation is useful for
the analysis of materials represented by directional bonding at the atomic scale.

3.2 Formulation for Standard Continuum Mechanics

3.2.1 Balance Laws

We begin by modifying Hardy’s formulation for the Lagrangian or material frame. Hardy’s work
uses the balance equations for mass, linear momentum and energy. These are expressed in a spatial
configuration as follows:

∂ρ

∂ t
+∇x · (ρv) = 0 (3.1)

∂ (ρv)
∂ t

= ∇x · (σσσ −ρv⊗v)+ρb (3.2)

∂ (ρe)
∂ t

= ∇x · (σσσ ·v−ρev−q)+ρb ·v+ρh (3.3)

These expressions can be manipulated to use the full or material time derivative d
dt instead of the

partial time derivative ∂

∂ t :

dρ

dt
+ρ∇x ·v = 0 (3.4)

ρ
dv
dt

= ∇x ·σσσ +ρb (3.5)

ρ
dε

dt
= σσσ : L−∇x ·q+ρh (3.6)

In equations (3.1) through (3.6) the symbols ρ , v, σσσ , b, e, ε , q and h are used for mass density,
velocity, Cauchy stress, body force per unit mass, total energy per unit mass, internal energy per
unit mass (total energy contains contributions from both internal energy and continuum kinetic
energy: e = ε + 1

2v2), heat flux and energy generation per unit mass, respectively. Also, ∇x ≡ ∂

∂x
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and L≡∇xv. Equations (3.1) - (3.3) are commonly used in fluid dynamics analyses whereas equa-
tions (3.4) - (3.6) are typically used to solve solid mechanics problems. Nevertheless, the variables
used within all of these laws are defined with respect to the current/spatial configuration. These
variables and equations can also be expressed with respect to the reference/material configuration:

dρ0

dt
= 0 (3.7)

ρ0
dv
dt

= P ·∇X +ρ0b (3.8)

ρ0
dε

dt
= P : Ḟ−∇X ·Q+ρ0h (3.9)

In these equations, the symbols ρ0, P, b, F, Q and h are used for mass density (mass per unit
reference volume), 1st Piola-Kirchhoff stress (force per unit reference area), body force per unit
mass, deformation gradient ( ∂x

∂X ), reference heat flux (energy per unit reference area per unit time)
and energy generation per unit mass, respectively. Also, Ḟ ≡ dF

dt = LF. These variables are all
functions of the reference configuration (X) and time. The expression P ·∇X is defined to be
consistent with the index notation PiJ,J .

3.2.2 Densities and Localization

We consider a body to be a system of N atoms which are interacting with each other through
some inter-atomic potential energy formulation. Each atom α is characterized by its mass mα ,
its position in the reference configuration Xα , its position in the current configuration xα , and its
velocity vα = dxα

dt .∗

In Hardy’s formulation, two views of the material system are considered. One perspective is
the continuum, where quantities are point-wise functions of time and position. These quantities
include mass density ρ0(X, t), momentum density p0(X, t), and energy density ρ0e(X, t). The other
perspective is that the material system contains atoms, each of which has its own mass, momentum,
potential energy and kinetic energy. In order to connect the two views, Hardy uses a localization
function ψ which averages the properties of the atoms, and allows many atoms to contribute to a
continuum property at a specific position and time. In his original formulation, Hardy expressed
ψ as a function of current position. In our derivation, we instead choose it to be a function of
reference position. The three key relations analogous to Hardy’s spatial forms are:

ρ0(X, t) =
N

∑
α=1

mα
ψ(Xα −X) (3.10)

∗In this article, a superscripted, lower-case Greek letter will denote a property associated with an atom, e.g. mass
mα , momentum pα , etc., whereas a subscripted, lower-case Roman letter will denote the Cartesian coordinate compo-
nents of vector quantities. For example, vα

i denotes the i-th component of the velocity vector of atom α .
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p0(X, t) =
N

∑
α=1

mαvα
ψ(Xα −X) (3.11)

ρ0e(X, t) =
N

∑
α=1

{
1
2

mα (vα)2 +φ
α

}
ψ(Xα −X). (3.12)

A few important things to note:

• The localization function ψ(r) is non-negative, i.e. ψ(r)≥ 0

• ψ(r) has dimensions of inverse volume.

• In equation (3.12), the total potential energy density of the system is expressed as the sum-
mation of individual atomic potential energies, φα .

• The velocity field v is defined by the expression

v(X, t)≡ p0(X, t)
ρ0(X, t)

=
∑

N
α=1 mαvαψ(Xα −X)

∑
N
α=1 mαψ(Xα −X)

. (3.13)

which is effectively a mass weighted average. With velocity defined in this manner, the
displacement field u can be defined as

u(X, t) =
∑

N
α=1 mαuαψ(Xα −X)

∑
N
α=1 mαψ(Xα −X)

, (3.14)

which is consistent, i.e. v = d
dt u, with the velocity field defined in (3.13). With a dis-

placement field we can construct the motion of material points X from reference to current
configuration as a function of time. Furthermore, we can apply the differential operator ∇X
to (3.14) to define a displacement gradient,

u∇X =
(

∂u
∂X

)T

=
∑

N
α=1 mα (uα −u(X, t))⊗∇Xψ(Xα −X)

∑
N
α=1 mαψ(Xα −X)

, (3.15)

which then can be used to form a locally defined deformation gradient F(X, t) = 1 + u∇X.
However, this use of Hardy localization places additional requirements on the smoothness
and exact form of ψ . For example, a so-called “top hat” or radial Heaviside function that
is constant and non-zero only in compact region would not produce satisfying displacement
gradients.

On closing this section, we note that in his earlier works [109, 111], Hardy established two partic-
ular aspects of the localization function ψ:

1. ψ(r) is a normalized function, thus ∫
R3

ψ(r)d3r = 1. (3.16)
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2. ψ(r) is regular enough to construct a bond function Bαβ (X) between atoms α and β as
defined by the expression

Bαβ (X)≡
∫ 1

0
ψ(λXαβ +Xβ −X)dλ , (3.17)

where Xαβ = Xα −Xβ . By taking the derivative of ψ(λXαβ +Xβ −X) with respect to λ ,

∂ψ(λXαβ +Xβ −X)
∂λ

=−Xαβ ·∇Xψ(λXαβ +Xβ −X), (3.18)

and then integrating from λ = 0 to λ = 1, one obtains the identity:

ψ(Xα −X)−ψ(Xβ −X) =−Xαβ ·∇XBαβ (X). (3.19)

3.2.3 Energy and Force Assumptions

Hardy makes four key assumptions about the forms of the energies of, and forces on, the atoms in
the system. The first is that the total potential energy of the system, Φ, can be considered to be the
summation of individual potential energies of each atom within the system,

Φ =
N

∑
α=1

φ
α . (3.20)

Although this is not always the case, it is usually assumed true for simulations of systems governed
by empirical potentials. The usual procedure for constructing φ α is to partition the energies per
bond to each of the constituent atoms such that the partition factors add to one.

The second assumption is that the force on any atom can be expressed by the summation

fα ≡− ∂Φ

∂xα
=

N

∑
β 6=α

fαβ . (3.21)

This statement can always be made, although it is not always clear what the physical meaning of
fαβ is. When Φ is the summation of pair potentials, φ α = 1

2 ∑
N
β 6=α

φ αβ (xαβ ) where xαβ = ‖xαβ‖,
or for the Embedded Atom Method, fαβ obviously means the force exerted on atom α by atom
β . However, for some multi-body potentials, such as the 3-body term in the Stillinger-Weber
potential [226], the meaning is not so straight-forward; nevertheless, the force partition (3.21) can
be constructed. This partition is not unique; however, the selection of the specific form of fαβ will
impact the ability of our formulation to satisfy all of the continuum theory balance laws, as will be
shown in subsequent sections.

The third assumption Hardy makes is that the atomic potential energies depend only on the
relative inter-atomic distances, φ α = φ α(xαβ ,xαγ , . . . ,xβγ), so

fα =−
N

∑
β 6=α

N

∑
γ=1

∂φ γ

∂xαβ

xαβ

xαβ
. (3.22)
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This expression includes the possibility that α = γ . Again, radially-symmetric potentials such as
Lennard-Jones and EAM qualify for this assumption, but it is unclear whether potential energies
that depend on bond orientations do. For the 3-body term in the Stillinger-Weber potential [226],
it can be shown by way of the law of cosines, which relates the bond angles to relative inter-atomic
distances, that this third assumption is valid.

Finally, the fourth assumption made is that each atomic potential energy depends only on the
distances between the atom under consideration and all other atoms, φ α = φ α(xαβ ,xαγ , . . . ,xαN).
Thus, the force between atoms α and β can be expressed as

fαβ =−

{
∂φ α

∂xαβ
+

∂φ β

∂xαβ

}
xαβ

xαβ
=−fβα . (3.23)

Clearly, while pair potentials and EAM qualify for this assumption, the potential of Stillinger-
Weber does not since the angle between atoms α,β ,γ depends on all three relative distances in-
cluding xβγ . Section 3.4 addresses this point in detail.

3.2.4 Derivation of Continuum Expressions

3.2.4.1 Balance of Mass

Inspection of equation (3.10) reveals that

dρ0

dt
= 0

3.2.4.2 Balance of Linear Momentum

Starting with Hardy’s expression for momentum density (3.11),

ρ0
dv
dt

=
dp0

dt
=

d
dt

{
N

∑
α=1

mαvα
ψ(Xα −X)

}

=
N

∑
α=1

mα dvα

dt
ψ(Xα −X)

=
N

∑
α=1

(fα +mαbα)ψ(Xα −X),

where we have divided the total force on atom α into the sum of total internal force fα and the
body force mαbα . The internal force term on the RHS of the above expression can be combined
with Hardy’s second force assumption to obtain,

N

∑
α=1

fα
ψ(Xα −X) =

N

∑
α=1

N

∑
β 6=α

fαβ
ψ(Xα −X).
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Since α and β run over all atoms in the system, they are considered dummy indices and can be
switched. By doing this, and using the symmetry condition, (3.23), one obtains

N

∑
α=1

fα
ψ(Xα −X) =

1
2

N

∑
α=1

N

∑
β 6=α

fαβ

(
ψ(Xα −X)−ψ(Xβ −X)

)
.

Using this with expression (3.19), the time derivative of the momentum density becomes

ρ0
dv
dt

=
N

∑
α=1

(
1
2

N

∑
β 6=α

fαβ

(
−Xαβ ·∇XBαβ (X)

)
+mαbα

ψ(Xα −X)

)
(3.24)

=

(
−1

2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗Xαβ Bαβ (X)

)
·∇X +

N

∑
α=1

mαbα
ψ(Xα −X). (3.25)

Comparing equation (3.25) with the continuum balance of momentum (3.8), we observe that in
order for these expressions to be consistent with one another,

P =−1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗Xαβ Bαβ (X), (3.26)

and

b =
1
ρ0

N

∑
α=1

mαbα
ψ(Xα −X) =

∑
N
α=1 mαbαψ(Xα −X)

∑
N
α=1 mαψ(Xα −X)

. (3.27)

For pair and other central force potentials (EAM),

P =
1
2

N

∑
α=1

N

∑
β 6=α

{
∂φ α

∂xαβ
+

∂φ β

∂xαβ

}
xαβ ⊗Xαβ

xαβ
Bαβ (X). (3.28)

This expression can be further simplified by splitting this expression into two terms, switching
the dummy indices used in one of the terms, and using the relations xβα = xαβ , xβα = −xαβ ,
Xβα =−Xαβ and Bβα = Bαβ to obtain

P =
N

∑
α=1

N

∑
β 6=α

∂φ β

∂xαβ

xαβ ⊗Xαβ

xαβ
Bαβ (X). (3.29)

It is interesting to note that equation (3.26) shows that P is connected to the underlying atomic
displacements through the inter-atomic forces fαβ . Our expression defines stress without the need
to necessarily define a deformation gradient field or a hyperelastic energy function.

Also note that equation (3.26) contains only force terms on the RHS; no explicit dependence
on velocity is present,† unlike the Cauchy stress expression

σσσ =−1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗xαβ B̃αβ (x)−
N

∑
α=1

mα v̂α ⊗ v̂α
ψ(xα −x) (3.30)

†The P-K expression (3.26) also differs from the Cauchy expression (3.30) in that it gives a zero value for the
somewhat degenerate case of a non-interacting gas regardless of temperature.
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from the Eulerian analysis done by Hardy [109, 111]. The relative velocity v̂α is defined

v̂α ≡ vα −v(x, t) . (3.31)

and has the property
N

∑
α=1

mα v̂α
ψ(xα −x) = 0 (3.32)

by virtue of the Eulerian analogue of the definition (3.13). Note that B̃ is the bond function ex-
pressed in units of inverse current/deformed volume rather than units of inverse reference/undeformed
volume.

If we consider the continuum Piola transformation‡ from 1st P-K stress to Cauchy stress, σσσ =
1
J P ·FT where J ≡ detF, we produce

1
J

PFT =−1
J

N

∑
α=1

N

∑
β 6=α

1
2

fαβ ⊗Xαβ Bαβ (X) ·FT . (3.33)

In order to simplify this equation, the position of each atom can be decomposed into a rigid body
translation and/or rotation, d(t), a homogeneous deformation, i.e. every atom experiences the same
deformation gradient F, plus a perturbation§ due to thermal fluctuations and/or inhomogeneities in
the deformation field,

xα = d(t)+F(X, t) ·Xα + x̌α(t) (3.34)

so that x̌α contains higher order terms in Xα . We define ΞΞΞ
α = Xα −X where now X satisfies

X =
1
ρ0

N

∑
α=1

mαXα
ψ(Xα −X) (3.35)

without loss of generality, in order to write

vα = ḋ+ Ḟ ·Xα + ˙̌xα = ḋ+ Ḟ ·X+ Ḟ ·ΞΞΞα + ˙̌xα (3.36)

and then to identify
v̂α = ḞΞΞΞ

α + ˙̌xα (3.37)

with the part of the velocity vα that satisfies (3.32). Since xαβ = F ·Xαβ + x̌αβ , we can recast
(3.33) as

1
J

PFT =−1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗
(

xαβ − x̌αβ

)
B̃αβ (X)

=−1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗xαβ B̃αβ (X)+
1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗ x̌αβ B̃αβ (X)

(3.38)

‡The Piola transform da = det(F)F−T dA relates the change in directed area elements from reference to current
configuration by way of the deformation gradient.

§Here we are assuming that (3.34) represents a decomposition by exact mass-weighted L2 projection. Equation
(3.14), on the other-hand, represents an approximate projection; Section 3.3.1 will provide a more detailed discussion
of this fact.
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If we now examine the special case of a full system average, such that Ψ = Bαβ = 1/V with V
the being the system volume, and more importantly the atoms in the support of Ψ do not change,
the Piola transformed P from (3.38) becomes

1
J

PFT =− 1
2V

N

∑
α=1

N

∑
β 6=α

fαβ ⊗xαβ +
1

2V

N

∑
α=1

N

∑
β 6=α

fαβ ⊗ x̌αβ , (3.39)

and the Cauchy stress (3.30) becomes

σσσ =− 1
2V

N

∑
α=1

N

∑
β 6=α

fαβ ⊗xαβ − 1
V

N

∑
α=1

mα v̂α ⊗ v̂α . (3.40)

The difference between these two expressions, (3.39) and (3.40), is

1
J

PFT −σσσ =
1
V

N

∑
α=1

1
2

N

∑
β 6=α

fαβ ⊗ x̌αβ +
N

∑
α=1

mα v̂α ⊗ v̂α

=
1
V

N

∑
α=1

(fα ⊗ x̌α +mα v̂α ⊗ v̂α)

(3.41)

after using the identity

1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗ x̌αβ =
1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗ (x̌α − x̌β )

=
1
2
( N

∑
α=1

N

∑
β 6=α

fαβ ⊗ x̌α +
N

∑
α=1

N

∑
β 6=α

fβα ⊗ x̌β
)

=
N

∑
α=1

fα ⊗ x̌α

(3.42)

which results simply from the manipulation of dummy indices, the definition (3.21) and the sym-
metry condition (3.23). In the absence of a body force (fα = mα v̇α ) then〈 N

∑
α=1

fα ⊗ x̌α

〉
=
〈 d

dt

N

∑
α=1

mαvα ⊗ x̌α

〉
−
〈 N

∑
α=1

mαvα ⊗ ˙̌xα

〉
=−

〈 N

∑
α=1

mαvα ⊗ ˙̌xα

〉
=−

〈 N

∑
α=1

mα
(
v+ v̂α

)
⊗
(
v̂α − ḞΞΞΞ

α
)〉

=−
〈

v⊗
N

∑
α=1

mα v̂α

〉
+
〈

v⊗ Ḟ
N

∑
α=1

mα
ΞΞΞ

α

〉
−
〈 N

∑
α=1

mα v̂α ⊗ v̂α

〉
+
〈 N

∑
α=1

mα v̂α ⊗ ḞΞΞΞ
α

〉
=−

〈 N

∑
α=1

mα v̂α ⊗ v̂α

〉
+
〈 N

∑
α=1

mα v̂α ⊗ ḞΞΞΞ
α

〉

(3.43)

given the definition of ΞΞΞ
α , and the fact that time averages 〈•〉 of exact differentials of bounded

quantities are zero. The identity (3.43) is a version of the virial theorem and if we assume a steady
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state, where Ḟ must be zero, then we have〈 N

∑
α=1

fα ⊗xα

〉
+
〈 N

∑
α=1

mαvα ⊗vα

〉
= 0 , (3.44)

This does not mean that F is necessarily fixed at the identity; rather, it means that (3.44) is satisfied
only for truly steady systems. Now we can return to (3.41) and show that the (time-averaged) Hardy
expressions for the transformed 1st Piola-Kirchhoff stress and the Cauchy stress are consistent:〈1

J
PFT −σσσ

〉
=

1
V

〈 N

∑
α=1

fα ⊗ x̌α +mα v̂α ⊗ v̂α

〉
= 0 (3.45)

by use of (3.44).

The main difficulty in extending this proof to the general case is that the atoms contributing
to the sums in (3.30) and (3.33) may be different depending on how atoms are flowing through
space. Moreover, mapping the reference frame function Bαβ (X) to the spatial B̃αβ (x) is non-
trivial. Rather than attempting to do this analysis, in Section 3.3 we will explore how the expres-
sion for P in equation (3.26) performs for cases where the thermal fluctuations are significant,
and compare our results with expectations from continuum mechanics and with the usual Hardy
definition for Cauchy stress.

3.2.4.3 Balance of Energy

Starting with the Lagrangian expression for the system energy (3.12),

d (ρ0e)
dt

= ρ0
de
dt

=
d
dt

{
N

∑
α=1

{
1
2

mα (vα)2 +φ
α

}
ψ(Xα −X)

}

=
N

∑
α=1

{
mα

(
dvα

dt
·vα

)
+

dφ α

dt

}
ψ(Xα −X)

=
N

∑
α=1

{
(fα +mαbα) ·vα +

dφ α

dt

}
ψ(Xα −X).

By imposing the second and third force assumptions, this simplifies to

ρ0
de
dt

= ∇X ·

(
N

∑
α=1

N

∑
β 6=α

N

∑
γ 6=α

(
∂φ γ

∂xαβ

xαβ

xαβ
·vα

)
XαγBαγ(X)

)
+

N

∑
α=1

mαbα ·vα
ψ(Xα −X). (3.46)

Equation (3.46) can be further simplified by using the fourth force assumption:

ρ0
de
dt

= ∇X ·

(
N

∑
α=1

N

∑
β 6=α

N

∑
γ 6=α

(
∂φ γ

∂xαβ

(
δαγ +δβγ

) xαβ

xαβ
·vα

)
XαγBαγ(X)

)
+

N

∑
α=1

mαbα ·vα
ψ(Xα −X)

(3.47)

= ∇X ·

(
N

∑
α=1

N

∑
β 6=α

(
∂φ β

∂xαβ

xαβ

xαβ
·vα

)
Xαβ Bαβ (X)

)
+

N

∑
α=1

mαbα ·vα
ψ(Xα −X) (3.48)
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To proceed further, we separate atomic motion from continuum motion in two ways. First, we
split the atomic velocities vα into the continuum velocity v(X, t) and a relative velocity v̂α(X, t)
as in (3.31). Next we recall that earlier we recognized that the total energy, e contains contribu-
tions from both internal energy and continuum-scale kinetic energy. We separate this using the
expression e = ε + 1

2v2:

ρ0
de
dt

= ρ0
dε

dt
+ρ0

dv
dt
·v (3.49)

Application of (3.49) to the LHS of (3.48) and (3.31) to the RHS of (3.48) produces:

ρ0
dε

dt
+ρ0

dv
dt
·v = ∇X ·

(
N

∑
α=1

N

∑
β 6=α

(
∂φ β

∂xαβ

xαβ

xαβ
· (v+ v̂α)

)
Xαβ Bαβ (X)

)

+
N

∑
α=1

mαbα · (v+ v̂α)ψ(Xα −X)

= ∇X · (v ·P)+∇X ·

(
N

∑
α=1

N

∑
β 6=α

(
∂φ β

∂xαβ

xαβ

xαβ
· v̂α

)
Xαβ Bαβ (X)

)

+ρ0b ·v+
N

∑
α=1

mαbα · v̂α
ψ(Xα −X)

= (∇Xv) : P+v · (P ·∇X +ρ0b)+∇X ·

(
N

∑
α=1

N

∑
β 6=α

(
∂φ β

∂xαβ

xαβ

xαβ
· v̂α

)
Xαβ Bαβ (X)

)

+
N

∑
α=1

mαbα · v̂α
ψ(Xα −X)

Using the balance of linear momentum equation (3.8), this simplifies to

ρ0
dε

dt
= (∇Xv) : P+∇X ·

(
N

∑
α=1

N

∑
β 6=α

(
∂φ β

∂xαβ

xαβ

xαβ
· v̂α

)
Xαβ Bαβ (X)

)
+

N

∑
α=1

mαbα · v̂α
ψ(Xα −X).

(3.50)
Since the ∇X and d

dt operators are commutative, ∇Xv = Ḟ. Hence,

ρ0
dε

dt
= P : Ḟ−∇X ·Q+ρ0h, (3.51)

where

Q =−
N

∑
α=1

N

∑
β 6=α

(
∂φ β

∂xαβ

xαβ

xαβ
· v̂α

)
Xαβ Bαβ (X) (3.52)

is the heat flux as expressed in the reference configuration. We note that like the expression for
stress this expression contains only a potential term and not a kinetic term, unlike the spatial frame
heat flux expression derived by Hardy [196].
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Comparison of (3.50) with (3.51) also produces the relation defining energy generation per unit
mass:

h =
1
ρ0

N

∑
α=1

mαbα · v̂α
ψ(Xα −X) =

∑
N
α=1 mαbα · v̂αψ(Xα −X)

∑
N
α=1 mαψ(Xα −X)

(3.53)

We note that for a uniform body force field this term simplifies to zero. This term would be
also be negligible for a non-uniform body force field for which significant variations in the field
are defined at larger length scales that the localization volume size associated with ψ . However,
for situations where b truly varies from atom to atom, it appears that the work done by the field
against the relative velocity field generates energy. The term h may also be related to other energy
source terms that can be introduced into the atomic energy, although none are present in the above
analysis.

Hardy and colleagues also derived [196] an expression for temperature by considering the
equipartition theorem and the kinetic energy associated with atomic velocities relative to the ve-
locity of the continuum at a spatial point,

T(x, t) =
1

3kB

∑
N
α=1 mα (v̂α)2

ψ(xα −x)

∑
N
α=1 ψ(xα −x)

, (3.54)

which is a simple weighted average as opposed to the volume average in (3.10) for example.
Here kB is Boltzman’s constant. Similarly, we can define a temperature field using our densities
expressed in the reference configuration,

T(X, t) =
1

3kB

∑
N
α=1 mα (v̂α)2

ψ(Xα −X)

∑
N
α=1 ψ(Xα −X)

. (3.55)

3.3 Evaluation of Material Frame Expressions

In this section, we examine the behavior of our P-K stress expression for several molecular dynam-
ics simulations. These simulations will confirm that our expression for P-K stress is consistent with
both the virial stress and the Cauchy stress expression defined by Hardy. All of our simulations
involve system of copper modeled using the EAM potential by Foiles et al. [75]. This potential
creates an equilibrium, face-centered-cubic crystal of Cu of lattice parameter equal to 3.615 Å at
zero temperature. For molecular dynamics simulations, a timestep of 0.001 ps is used.

Calculations are done using specialized routines written for ParaDyn [201] and the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)[200], molecular simulation codes de-
veloped at Sandia National Laboratories. The calculations in ParaDyn are done using a single point
in the center of system with a spherical localization volume of radius 15 Å and a quartic polyno-
mial localization function. The calculations in LAMMPS are done using a single element mesh
that encloses the whole system in its undeformed, zero temperature configuration. The localization
function consists of the multiple of three linear shape functions, one for each orthogonal direction.
Since the system is subject to periodic boundary conditions, the mesh actually contains only a
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single node (the point at which continuum variables are evaluated), and both ψ and Bαβ equal the
quantity V−1

0 (where V0 is the system size at zero temperature and deformation) for every atom and
bond, respectively.

For the analyses presented in this section, the choice of the zero temperature, undeformed
system is used as our material configuration. The rationale for this selection will be elaborated
upon in the subsequent discussion section.

3.3.1 Construction of fields

The Hardy formalism has much in common with the data reduction and smoothing technique
called Moving Least Squares (MLS) [136]. For instance, (3.14) can been seen as the solution to a
weighted least-squares problem using a lumped version of the least squares matrix [245]. Although
effective, it becomes expensive to recalculate, say (3.14) at every sample point of interest in a
simulation with large spatial variations. Instead we choose to sample on a collection of points
I = 1..M and then use finite element shape functions NI(X) to construct an approximation to the
field of interest, for example the displacement field

u(X, t) =
M

∑
I=1

uI(t)NI(X) =
M

∑
I=1

∑
N
α=1 mαuαψ(Xα −XI)

∑
N
α=1 mαψ(Xα −XI)

NI(X) (3.56)

where we can define and store the matrices ΨIα = Ψ(xα − xI) and BIαβ = Bαβ (xI). This also
gives us a second way to estimate the displacement gradient (3.15) by taking the gradient of the
interpolation NI(X).

3.3.2 Stress for a constrained finite temperature system

In this and the following section, we present simulations of a system containing 4,000 atoms
(10 x 10 x 10 unit cells), where periodic boundary conditions are enforced on all sides of the
simulation box. We first examine the situation where our system is constrained to remain at the
reference volume, but heated to a finite, non-zero temperature. In this instance F = 1 and J = 1;
hence, the values of 1st P-K and Cauchy stress should coincide. Unless otherwise stated, the results
presented here refer to the continuum stress measures evaluated for the single point in the Para-
Dyn simulations. The results obtained in the LAMMPS simulations were similar in all cases, with
stress values much closer in agreement to the system virial as one would expect since all atoms
and bonds contribute uniformly in that analysis.

Figure 3.1 shows the variation of instantaneous pressure with time for a system that is heated to
100 K. ‘Pressure’ in this case refers to the negative of the hydrostatic stress for each stress measure,
i.e. the P-K pressure equals −1

3Trace(P) = −1
3Pkk, the Cauchy pressure equals −1

3Trace(σσσ) and
the same relation is used for the system virial. The distributions of P-K and Cauchy nearly perfectly
overlap with one another, and both distributions are centered around the virial distribution. Also,
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Figure 3.1. Variation of instantaneous pressure with time for a
constrained system at 100 K.

since the volume of material used for evaluation is a subset of the whole system, the variations
from the mean value are larger in magnitude for both P-K and Cauchy pressures as compared with
the variation observed in the virial. It is interesting to note that while the mathematical analysis
presented in the previous section showed that the P-K and Cauchy stress expressions agree with
one another (through the Jσσσ = PFT transformation) only if a long time average is taken, Figure 3.1
shows that close agreement also exists for stress evaluations at specific instants in time.

The agreement between our stress measures and the virial is easier to see by using the data in
Figure 3.1 to calculate cumulative time averaged pressures. Figure 3.2 shows the variation of these
time averaged pressures with time for the same duration, 106 timesteps. This figure shows that
the time averaged pressures essentially converge within 500,000 timesteps (0.5 ns), and that the
converged values of P-K, Cauchy and virial pressures are very close to one another. This agreement
is more clearly shown in Table 3.1, which compares the converged values of P-K pressure (after
106 timesteps) with the virial pressure for both the ParaDyn analysis shown in Figure 3.2 and
the LAMMPS analysis. We note in Table 3.1 that the percent difference between P-K and virial
pressures is much less than 1%, and that this difference is smaller for the LAMMPS analysis
(which uses all atoms in the system) than for the ParaDyn analysis.

Table 3.1 also shows the converged time averaged pressures for systems heated to 300 K and
675 K, values approximately 22% and 50%, respectively, of the melting temperature of copper.
It can be seen that the agreement between P-K pressure and the virial remains excellent even at
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Figure 3.2. Variation of time averaged pressure with time for a
constrained system at 100 K.

Table 3.1. Time averaged pressures after 106 timesteps for con-
strained volume simulations.

Temperature (K) Point / Mesh virial pressure (GPa) P-K pressure (GPa) % difference
100 Point 0.6613775 0.6618136 0.06653
100 Mesh 0.6614168 0.6613937 -0.00350
300 Point 1.944335 1.944422 0.00448
300 Mesh 1.944465 1.944413 -0.00264
675 Point 4.335872 4.334868 -0.02316
675 Mesh 4.335840 4.336577 0.01699

these high temperatures and stress levels. This close agreement is emphasized in Figure 3.3, which
graphically shows the variation of pressure with increasing temperature for this constrained system.
It was also observed that, at the highest temperature simulated of 675 K, agreement between the
P-K pressure and the virial improved if a longer time average is taken.

The above analyses show that our derived expression for P-K stress is consistent with a thermo-
mechanical measure of stress despite the fact that it contains only a potential and not a kinetic term,
unlike the Cauchy stress expression derived by Hardy. The small level of error between P-K stress
and the system virial noted in Table 3.1 is much smaller than the amount of stress attributed to the
kinetic part of Hardy’s Cauchy stress or the virial itself. That kinetic part is approximately equal
to 0.1169 GPa, 0.3507 GPa and 0.7891 GPa for the temperatures considered (100 K, 300 K and
675 K, respectively). As shown in Table 3.1, these values are significant fractions of the total virial
pressure listed for each temperature. Nevertheless, the P-K pressure estimate is in close agreement
with the total virial pressure. This confirms our earlier mathematical argument that the expression
for P-K stress (3.26) captures both the potential and the kinetic portions of the Cauchy stress.

For the situation of a constrained volume, the values of P-K and Cauchy stress were not antic-
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Figure 3.3. (a) Time averaged pressures after 106 timesteps
for constrained volume simulations performed at various tempera-
tures. (b) Differences between P-K and virial measures of pressure
at various temperatures.

ipated to differ by any significant amount. This expected outcome was confirmed by our simula-
tions. However, we have yet to consider a case for which deformation occurs and the two values
should be related by the Piola transform σσσ = 1

J PFT . This is done in the next section.

3.3.3 Finite temperature deformation

We now examine the scenario where our system starts out at zero temperature, is heated over the
course of 106 timesteps (1 ns) to a finite temperature but allowed to expand in order to maintain a
condition of zero pressure, is equilibrated for an additional 106 timesteps at that non-zero temper-
ature and zero pressure, and is then triaxially stretched an additional 1 or 5% from this expanded
state. Figure 3.4 shows the variation of the hydrostatic stresses for P, σσσ (as measured using the
original Hardy formulation) and the system virial for a stretch of 1% after equilibration at 100 K. In
this section, we plot and discuss only values measured from the simulations performed with Para-
Dyn; however, values calculated with LAMMPS were virtually the same. Figure 3.4 shows large
variations in the instantaneous estimates of P and σσσ as compared with the system virial. It is ob-
served that this variation stays within a limit of approximately± 15% of the long time average after
400,000 timesteps (0.4 ns) have elapsed. As expected, the values of P are slightly higher than the
values of σσσ and the virial. Figure 3.5 compares the transformed stress 1

J PFT to the Cauchy stress
and virial, and demonstrates that the transformed P-K stress is in close correspondence with the
Cauchy measure. In this figure, we see that the distributions of transformed Piola-Kirchhoff stress
and Cauchy stress nearly perfectly overlap with one another, and both distributions are centered
around the virial distribution. Again, we note that although the mathematical analysis presented
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Figure 3.4. Variation of instantaneous hydrostatic stress mea-
sures with time for a stretch of 1% after equilibration at 100 K and
zero pressure.
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Figure 3.5. Variation of instantaneous hydrostatic stress mea-
sures with time for a stretch of 1% after equilibration at 100 K and
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in the previous section showed that the P-K and Cauchy stress expressions agree with one another
only if a long time average is taken, Figure 3.5 shows that close agreement also exists for stress
evaluations at specific instants in time.

Figure 3.6 shows the cumulative time averages of the four stress values (P, σ , virial and trans-
formed P). It is observed that the system virial approaches its long time average in a short amount
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Figure 3.6. (a) Variation of time averaged hydrostatic stress mea-
sures with time for a stretch of 1% after equilibration at 100 K and
zero pressure. (b) Close-up of (a) for the first 250,000 timesteps.

of time, ∼ 20,000 timesteps (0.02 ns), and that both the Cauchy stress and transformed P-K stress
approach this same value within approximately 200,000 timesteps (0.2 ns). The P-K stress also ap-
proaches its own long time average within this same amount of time, and the value is appropriately
higher. Values of these long time averages are listed in Table 3.2. These results clearly show a
negligible difference between the transformed P-K stress value and the virial of the system. Thus,
we again conclude that our derived expression is consistent with the continuum relation between
Cauchy and P-K stress despite the absence of a kinetic term.

In addition to our simulation results for the case of 1% stretch at 100 K, Table 3.2 also shows
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Table 3.2. Time averaged stresses after 106 timesteps for simu-
lations of a heated and triaxially strained system. Here,‘% differ-
ence’ refers to the difference between transformed P-K stress (the
6th column) and the virial.

T (K) Point / Mesh total strain virial (GPa) P-K (GPa) 1
J (P-K)FT % difference

0 Point 0.01 3.876275 3.954033 3.876123 -0.00394
0 Mesh 0.01 3.876273 3.954190 3.876277 -0.00009
0 Point 0.05 14.70036 16.20713 14.70035 -0.00009
0 Mesh 0.05 14.70036 16.20710 14.70032 -0.00026

100 Point 0.01168 3.779846 3.868452 3.779658 -0.00499
100 Mesh 0.01163 3.782552 3.871040 3.782538 -0.00038
100 Point 0.05169 14.26000 15.77334 14.26085 0.00597
300 Point 0.01495 3.581698 3.690054 3.582124 0.01190
300 Mesh 0.01495 3.579387 3.687273 3.579472 0.002386
300 Point 0.05515 13.30167 14.80901 13.30142 -0.00186
675 Point 0.02174 3.194773 3.334715 3.194304 -0.01469
675 Mesh 0.02174 3.194821 3.303813 3.164701 -0.94278
675 Point 0.06221 11.33258 12.78735 11.33345 0.00768

results for systems heated to 300 K and 675 K for stretches of both 1% and 5% following thermal
equilibration at zero pressure. We observe that in all cases, the difference between the hydrostatic
virial stress and the hydrostatic transformed P-K stress is very small with a difference of, at most,
1%. The results for the point evaluation of P-K hydrostatic stress (the ParaDyn simulations) are
graphically shown in Figures 3.7(a) and (b), for the 1% and 5% stretches respectively. These
figures reveal that at higher temperatures a lower amount of stress is produced within the system.
This result can be attributed to the temperature dependence of the elastic constants that softens
(decreases) their value with increasing temperature.

3.3.4 Tensile stretching of a center-cracked body

The previous two examples show that our formulation enables the calculation of 1st Piola-Kirchhoff
stress that is consistent with estimates of the Cauchy stress, either using the system virial or the
original Hardy formulation. However, these examples only produce a single value of stress rep-
resentative of the entire system, i.e. systems subjected to a homogeneous deformation state. The
strength of our formulation lies in its ability to produce a field of spatially varying values of stress
for cases where an inhomogeneous deformation is produced. In this section, we examine a system
containing a center crack and compare the inhomogeneous stress fields that arise due to tensile
stretching.

Our system consists 9,840 atoms, approximately 20 x 20 x 6 unit cells, that contains a center
crack 4 unit cells wide in the center. We acknowledge that this is a small and highly constrained
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Figure 3.7. Variation of time-averged hydrostatic stress measures
after 106 timesteps with temperature for a stretch of (a) 1%, and
(b) 5 % after equilibration at that temperature.

system, and use it only as a means to show our ability to estimate spatially varying stress fields.
The crack is created by excluding interactions between atoms above the center-plane of the system
(and within the 4 unit cell width) and atoms below the center-plane. Periodic boundary conditions
are used in the horizontal and thickness directions, while atoms within 2 unit cells of the system’s
upper and lower boundaries are controlled by prescribing a fixed velocity of ±0.1 Å/ps, respec-
tively. Given the dimensions of our system, this produces an approximate strain rate of initial value
3.46 x 10−3 ps−1 = 3.46 x 109 sec−1. Before inducing the stretching, our system is relaxed using a
conjugate gradient minimization algorithm in order to relax the upper, lower and crack boundaries
and set the reference configuration.

To calculate stress at material points, we use LAMMPS with the previously discussed method
where material points are nodes, the localization volume consists of rectangular parallelepipeds,
and localization functions are again multiples of three linear shape functions, one for each orthog-
onal direction. For this system, our mesh consists of 10 x 15 x 1 = 150 elements where our mesh
extends beyond the atomic system in the vertical direction by 2.5 unit cells at both the upper and
lower boundaries. In our analysis, both P-K and Cauchy stress are calculated, the latter using the
original formulation by Hardy.

Figure 3.8 shows the displaced atoms, colored by the values of the component uy of their dis-
placement vector, as well as uy displacement field evaluated at nodes and interpolated through
elements, for the center-cracked body vertically stretched by approximately 6.9%. The left por-
tion of Figure 3.8 clearly shows that the nodal values of displacement agree with the values of
nearby atoms, while the right portion displays a displacement field consistent with expectations
from fracture mechanics. It is interesting to note that the normalization present in equation (3.14)
enables approximately correct values of uy to be calculated at nodes bordering the boundaries of
the atomic system, even though 1/2 of each node’s localization volume is empty. This is because
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Figure 3.8. Displacement field uy for a center-cracked body ver-
tically stretched 6.9%. Left: Atoms pictured with overlaying mesh
and nodes. Right: Mesh elements showing contours of continuum
displacement field; mesh is shown with gray lines to identify ele-
ments.

the normalization produces a displacement value corresponding to the center of mass of the local-
ization volume and assigns that value to the node. And, since each element only contains a small
number of atoms, the difference between the nodal position and the center of mass position is rel-
atively small. Obviously, special care should be taken to use small elements near the boundary
of an enclosed atomistic system, or near any region for which mass is unevenly distributed within
the localization volume in the reference configuration. Nodes with localization volumes that are
completely empty of atoms are assigned a null value.

Figure 3.9 shows the fields of Pyy and σyy for the same stretch state of 6.9%. These fields
are consistent with expectations from fracture mechanics, possessing features such as zero stress
in the crack opening region and concentrations of tensile stress near the crack tips. Consistency
between our formulation and Hardy’s is shown by the qualitative similarity of the fields, with
values of σyy having, in general, a slightly higher magnitude than the corresponding value of Pyy.
Quantitative consistency can be evaluated by comparing the values at a specific material point.
We choose a node near the crack tip, at a position of {21.69 Å, 10.845 Å, 10.845 Å} (6 elements
down from the top of the system, and 2 elements from the right edge). At this node, the value
of Pyy equals 9.40327 GPa, and the value of σyy is 10.0719 GPa. Using the method discussed in
section 3.3.1 to estimate displacement gradient ∂u

∂X , and by using the relation F = 1+ ∂u
∂X , the value

of transformed P-K stress is calculated to be 9.48638 GPa. This value is somewhat lower than the
expected value from the Hardy expression (a difference of about -5.81%). However, our earlier
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Figure 3.9. Stress fields for a center-cracked body vertically
stretched 6.9%. Left: Mesh elements showing contours of con-
tinuum field Pyy. Right: Mesh elements showing contours of con-
tinuum field σyy as determined from the original Hardy formula-
tion. In both pictures, the mesh is shown with gray lines to identify
elements.

simulation examples indicate that this agreement may improve if the system is fixed at a given
(inhomogeneous) deformation state and stress values are time averaged for periods ∼ 1 ns. It may
also be the case that displacement gradient values are actually higher in magnitude than estimated
here due to the small size of the system and the use of (relatively) large localization volumes near
the crack tip.

3.4 Formulation for a Micromorphic Continuum

In section 3.2.3, we noted that Hardy makes four assumptions about the forms of the energies of,
and forces on, the atoms in the system. We also noted that arbitrary multi-body potentials do not
necessarily satisfy all four assumptions. For example, the Stillinger-Weber potential for silicon
[226], contains a 3-body term that violates the fourth assumption. This assumption is pivotal as it
leads to a simplified form of the inter-atomic force between two atoms, which is then used to isolate
the expression for stress in the balance of energy. Without this relationship, it is not straightforward
to show that the stress expression derived from momentum balance also satisfies energy balance.
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This issue has been examined further by both Delph [59] and Chen [35]. In his work, Delph
uses the linear momentum balance to derive a generalized expression for stress that includes multi-
body terms up to Nth order (where N is the number of atoms in the system). However, this same
expression is not present within his analysis of the balance of energy. On the other hand, Chen
restricts her analysis to consider only potentials with 2-body and 3-body terms, such as the afore-
mentioned Stillinger-Weber potential and the potential by Tersoff [235, 236]. While Chen does
manage to show that the stress expression defined by linear momentum appears in the energy bal-
ance, her derivation is unclear in its consistency with regard to the expression for the inter-atomic
force between two atoms.

We hypothesize that the difficulties experienced by both Delph and Chen are due to the un-
derlying assumption that potential energies that use multi-body terms representative of directional
bonding constitute a standard continuum at the microscopic scale. Rather, we conjecture that an
enhanced continuum theory is required in order to represent such a material. One such theory is
that of a micromorphic continuum as put forth by Eringen [68, 67]. This theory is attractive as it
is based on the supposition of microscopic deformations and rotations and includes the concepts
of asymmetric stress and a couple stress tensor, both of which act to balance angular or rotational
momentum in a body. Such concepts would seemingly be vital when defining volumes associated
with continuum material points of arbitrary size and shape for a material governed by directional
bonding between atoms. (This point is further addressed in the Appendix.)

In this section, we apply our material frame version of the Hardy formulation to the set of
balance laws for a micromorphic continuum. The choice of a material frame analysis is not hap-
penstance; indeed, the authors have attempted to perform a spatial frame analysis consistent with
the original formulation by Hardy. However, this analysis is not trivial as an inconsistency exists
between the notion of a fixed spatial point x from the Hardy formulation with the material point x̄
of Eringen’s theory. In micromorphic theory, x̄ represents the center of mass of a “microvolume”
or “microelement” at the current state of deformation. However, Hardy’s analysis requires that x
represent a fixed spatial point. Combining the two formulations requires the introduction of addi-
tional terms to account for the offset of the center of mass from the spatial point x. We have thus
far been unable to define a unambiguous set of balance laws that includes such additional vari-
ables. Eringen’s original derivation for balance laws in the material frame, as shown in [68], does
include such variables. For a material frame analysis (as presented in section 3.2), this inclusion is
unnecessary: a set of material points X can be selected that satisfy the center of mass requirement
and these points remain fixed over time in the reference configuration. This statement is not true
for spatial points that coincide with the material points when the system occupies the reference
configuration as, at a later time, they will no longer represent mass centers.

Before proceeding, we note that Chen and Lee previously performed an analysis to connect
atomistic quantities to micromorphic theory [36, 37]. In their work, they consider both instanta-
neous and time-averaged forms of thermomechanical variables and the consistency of these vari-
ables with the balance laws for a micromorphic continuum. However, their analysis was performed
using a mixture of material and spatial frames as they use the spatial forms of the balance laws and
consider current positions of microelements but define quantities relative to fixed sets of atoms
associated with each microelement. In addition, they use the original form of Eringen’s theory
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without consideration of the mass center issue discussed above. Our work will involve manipula-
tion of the material frame versions of the balance laws, thereby avoiding this inconsistency. It is
worth noting that Zhou and McDowell considered a similar “equivalent continuum” analysis for a
micropolar continuum [254] (a continuum with microelements that undergo rigid rotations only),
but proceeded in an entirely different manner than we do or that Chen and Lee have. Also, Mur-
doch has performed an analysis in which he defined a couple stress tensor that satisfies a moment
of momentum balance [168]. It will be seen that our expresssion for couple stress contains signifi-
cant differences as compared to Murdoch’s expression, and that, unlike Murdoch, we consider the
full set of micromorphic balance laws as established by Eringen.

3.4.1 Balance Laws

The material frame balance laws for a micromorphic continuum, as derived by Eringen in [68], are
as follows:

dρ0

dt
= 0 (3.57)

ρ0
dI
dt

= 0 (3.58)

ρ0
dv
dt

= P ·∇X +ρ0b (3.59)

ρ0
d2χχχ

dt2 · I = M ·∇X +P− P̄+ρ0c (3.60)

ρ0
dε

dt
= P : Ḟ+M : (χ̇χχ∇X)+

(
P̄−P

)
: χ̇χχ−∇X ·Q+ρ0h (3.61)

where I is the micro-inertia tensor, χχχ is the micro-deformation gradient, M is the couple stress
tensor, and χ̇χχ ≡ dχχχ

dt . The stress P̄ is a quantity related to P in the sense that the latter is considered
by Eringen to be a surface averaged limit of a traction while the former is a volume averaged limit
of that same traction (for a more precise explanation, the reader is referred to reference [68]). We
note that the total energy contains contributions from internal energy, continuum translational ki-
netic energy and continuum micro-rotational kinetic energy: e = ε + 1

2v2 + 1
2I :

(
χ̇χχ

T · χ̇χχ
)
.¶ These

equations appear in a more generalized form in [68]; however, to simplify our analysis we have
made the assumption of Cartesian coordinates (instead of curvilinear coordinates) and do not sep-
arate out intrinsic surface energy density. We also assume that the material points X coincide with
the centers of mass of the localization volumes they are associated with, as in (3.35). Hence,

X =
1
ρ0

N

∑
α=1

mαXα
ψ(Xα −X) =

∑
N
α=1 mαXαψ(Xα −X)

∑
N
α=1 mαψ(Xα −X)

. (3.62)

This expression makes the selection of material points X non-trivial. For an arbitrary arrangement
of atoms or choice of localization volume size or shape, this selection requires iteration in order

¶Note that in equation (3.61), the notation A : B represents the quantity ∑
3
i=1 ∑

3
J=1 AiJBiJ when A and B are second

order tensors and the quantity ∑
3
i=1 ∑

3
J=1 ∑

3
K=1 AiJKBiJK when A and B are third order tensors.
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for equation (3.62) be satisfied. However, since most crystal structures possess a high degree of
symmetry (especially if an undeformed, defect-free configuration is used as a reference state),
immediate selection of appropriate material points in a structured grid will be possible for many
problems.

3.4.2 Densities

The expressions for ρ0, p0 and ρ0e defined in equations (3.10), (3.11) and (3.12), respectively,
are reused for the micromorphic formulation. In addition, we define the following expression for
micro-inertia tensor I:

ρ0I(X, t) =
N

∑
α=1

mα
ΞΞΞ

α ⊗ΞΞΞ
α

ψ(Xα −X) (3.63)

In this expression, ΞΞΞ
α ≡ Xα −X using Eringen’s notation.‖ We also note that micro-inertia is the

second moment of mass for the localization volume centered at X (using relative position vectors
ΞΞΞ

α ), while mass density is the zeroth moment. Equation (3.62) can be used to show that the first
moment of mass is, in-fact, zero:

N

∑
α=1

mα
ΞΞΞ

α
ψ(Xα −X) =

N

∑
α=1

mα (Xα −X)ψ(Xα −X)

=
N

∑
α=1

mαXα
ψ(Xα −X)−

N

∑
α=1

mαXψ(Xα −X)

= ρ0X−X

(
N

∑
α=1

mα
ψ(Xα −X)

)
= ρ0X−ρ0X = 0

We also define a micro-rotational momentum tensor ϒϒϒ,

ρ0ϒϒϒ(X, t) =
N

∑
α=1

mαvα ⊗ΞΞΞ
α

ψ(Xα −X). (3.64)

As for standard continuum theory, there are several interesting aspects of this expression. Con-
sistency between equations (3.60) and (3.64) requires that ϒϒϒ = χ̇χχ · I. This makes sense; just as
we earlier defined a continuum velocity field as the product of linear momentum density and the
inverse of the mass density, now we define a “micro-deformational velocity tensor” (χ̇χχ) as the
product of micro-rotational momentum tensor and the inverse of the micro-inertia tensor:

χ̇χχ(X, t) = (ρ0ϒϒϒ) · (ρ0I)−1 =

(
N

∑
α=1

mαvα ⊗ΞΞΞ
α

ψ(Xα −X)

)
·

(
N

∑
α=1

mα
ΞΞΞ

α ⊗ΞΞΞ
α

ψ(Xα −X)

)−1

.

(3.65)

‖Recall that this same definition was used in (3.35).
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We also note that since the only time-dependent quantities in the above expression are the individ-
ual atomic velocities, we can integrate the expression to obtain the micro-deformation gradient,

χχχ(X, t) =

(
N

∑
α=1

mαxα ⊗ΞΞΞ
α

ψ(Xα −X)

)
·

(
N

∑
α=1

mα
ΞΞΞ

α ⊗ΞΞΞ
α

ψ(Xα −X)

)−1

. (3.66)

Using the expression Xα = X + ΞΞΞ
α with equation (3.62), we notice that χχχ → 1 in the limit of

zero deformation. We can use (3.65) and (3.66) to estimate the micro-gyration tensor defined by
Eringen,

ννν ≡ χ̇χχ ·χχχ−1 =

(
N

∑
α=1

mαvα ⊗ΞΞΞ
α

ψ(Xα −X)

)
·

(
N

∑
α=1

mαxα ⊗ΞΞΞ
α

ψ(Xα −X)

)−1

. (3.67)

Comparison of this expression with the expression by Chen and Lee [36] shows that our formula-
tion, while similar, does display significant differences.

3.4.3 Derivation of Continuum Expressions

3.4.3.1 Balance of Mass and Micro-Inertia

As before, inspection of equation (3.10) reveals that dρ0
dt = 0. Similarly, we notice that the ex-

pression for micro-inertia given in equation (3.63) contains no atomic variables that are time-
dependent. Hence,

ρ0
dI
dt

=
d (ρ0I)

dt
= 0.

3.4.3.2 Balance of Linear Momentum

We choose not to repeat the derivation shown in section 3.2.4.2, but merely refer to our derived
expressions for the 1st Piola-Kirchhoff stress tensor in equation (3.26),

P =−1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗Xαβ Bαβ (X),

and the body force vector in equation (3.27),

b =
∑

N
α=1 mαbαψ(Xα −X)

∑
N
α=1 mαψ(Xα −X)

.

We note that in this derivation it was not necessary to define the quantity fαβ , but merely acknowl-
edge the relations fα = ∑

N
β 6=α

fαβ and fβα = −fαβ . We will address the specific form of fαβ in a
later section.
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3.4.3.3 Balance of Rotational Momentum

We start with the expression for micro-rotational momentum given in (3.64) and take its time
derivative:

ρ0
d2χχχ

dt2 · I =
d
dt

(ρχ̇χχ · I)

=
d
dt

(ρ0ϒϒϒ)

=
d
dt

(
N

∑
α=1

mαvα ⊗ΞΞΞ
α

ψ(Xα −X)

)

=
N

∑
α=1

mα dvα

dt
⊗ΞΞΞ

α
ψ(Xα −X)

=
N

∑
α=1

(fα +mαbα)⊗ΞΞΞ
α

ψ(Xα −X)

By using the relation fα = ∑
N
β 6=α

fαβ and acknowledging that α and β are dummy indices, one
obtains:

ρ0
d2χχχ

dt2 · I =
1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗
(

ΞΞΞ
α

ψ(Xα −X)−ΞΞΞ
β

ψ(Xβ −X)
)

+
N

∑
α=1

mαbα ⊗ΞΞΞ
α

ψ(Xα −X)

(3.68)
In order to use the relationship shown in equation (3.19), we rearrange the first term on the RHS
of (3.68) (labeled RHS1 for convenience) into the following expression:

RHS1 =
1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗
(

Xα
ψ(Xα −X)−Xβ

ψ(Xβ −X)−X
[
ψ(Xα −X)−ψ(Xβ −X)

])
This can now be simplified to

RHS1 =
N

∑
α=1

N

∑
β 6=α

fαβ ⊗Xα
ψ(Xα −X)+

1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗X⊗Xαβ ·∇XBαβ .

We then use the chain rule to bring the divergence operator to the outside of the second term.
Hence,

ρ0
d2χχχ

dt2 · I =
N

∑
α=1

N

∑
β 6=α

fαβ ⊗Xα
ψ(Xα −X)

+

(
1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗X⊗Xαβ Bαβ

)
·∇X

− 1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗Xαβ Bαβ +
N

∑
α=1

mαbα ⊗ΞΞΞ
α

ψ(Xα −X).

(3.69)

74



At this point, we note that the third term on the RHS is none other than P. Also, the first two terms
on the RHS of equation (3.69) appear to lack frame invariance, i.e. the value of these terms will
depend on the material frame coordinate origin. In order to correct this, we add (to the first term)
and subtract (from the second term) the quantity(

1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗Xα ⊗Xαβ Bαβ

)
·∇X,

and again use the relation in equation (3.19). This simplifies equation (3.69) to

ρ0
d2χχχ

dt2 · I =
1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗Xα

(
ψ(Xα −X)+ψ(Xβ −X)

)
+

(
−1

2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗ΞΞΞ
α ⊗Xαβ Bαβ

)
·∇X +P+

N

∑
α=1

mαbα ⊗ΞΞΞ
α

ψ(Xα −X).

Finally, by separating the first term on the RHS into two separate terms, switching dummy indices
α and β and using the relation fβα =−fαβ , we arrive at

ρ0
d2χχχ

dt2 · I =
1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗Xαβ
ψ(Xα −X)

+

(
−1

2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗ΞΞΞ
α ⊗Xαβ Bαβ

)
·∇X +P+

N

∑
α=1

mαbα ⊗ΞΞΞ
α

ψ(Xα −X).

(3.70)

Comparing equation (3.70) with (3.60), we identify the expressions for couple stress,

M =−1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗ΞΞΞ
α ⊗Xαβ Bαβ , (3.71)

for P̄,

P̄ =−1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗Xαβ
ψ(Xα −X), (3.72)

and for the body couple,

c =
1
ρ0

N

∑
α=1

mαbα ⊗ΞΞΞ
α

ψ(Xα −X) =
∑

N
α=1 mαbα ⊗ΞΞΞ

α
ψ(Xα −X)

∑
N
α=1 mαψ(Xα −X)

(3.73)

Before proceeding to the next section, we again point out that, with regard to the inter-atomic
forces, we have only used the relations fα = ∑

N
β 6=α

fαβ and fβα =−fαβ . We have not yet specified

a form for the quantity fαβ .
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3.4.3.4 Balance of Energy

As before, we begin with Hardy’s expression for the system energy (3.12),

ρ0
de
dt

=
d (ρ0e)

dt
=

d
dt

{
N

∑
α=1

{
1
2

mα (vα)2 +φ
α

}
ψ(Xα −X)

}

=
N

∑
α=1

{
mα

(
dvα

dt
·vα

)
+

dφ α

dt

}
ψ(Xα −X)

=
N

∑
α=1

{
(fα +mαbα) ·vα +

dφ α

dt

}
ψ(Xα −X)

=
N

∑
α=1

{
fα ·vα +

dφ α

dt

}
ψ(Xα −X)+

N

∑
α=1

mαbα ·vα
ψ(Xα −X).

Using Hardy’s second assumption, fα = ∑
N
η=1 fαη , this can be also written as

ρ0
de
dt

=
N

∑
α=1

{
N

∑
η 6=α

fαη ·vα +
dφ α

dt

}
ψ(Xα −X)+

N

∑
α=1

mαbα ·vα
ψ(Xα −X). (3.74)

In order to simplify the expression above, we must (as did Hardy) provide a relationship between
the inter-atomic force fαη and the atomic potential energies φ α and φ η . Earlier, we noted that
Hardy’s third and fourth assumptions combined are only valid for pair and central force (e.g.
EAM) potentials and not for potentials representative of directional bonding such as the Stillinger-
Weber potential. Here, we substitute a new third assumption: each atom’s potential energy de-
pends only on the vectors that connect the atom under consideration to all other atoms. Hence,
φ α = φ α(xαβ ,xαγ , . . . ,xαN). While this seemingly limits the form of φ α , one realizes that this is
not the case as any inter-atomic bond vector in the system can be represented by combinations of
vectors between atom α and the atoms belonging to the bond of interest. Using this new relation,
the force between atoms α and η can be defined as

fαη =−
{

∂φ α

∂xαη
+

∂φ η

∂xαη

}
, (3.75)

our new fourth assumption. Regarding this assumed form for fαη , it should be noted that φ α

and φ η cannot depend arbitrarily on the vector xαη . In the Appendix of reference [259], it was
discussed that the system potential energy depends on its configuration through invariant quantities
in order to satisfy frame invariance (In this case, ‘frame’ refers to the location and orientation of the
coordinate system origin). Such invariant quantities include bond lengths, angles between bonds
involving common atoms, areas and volumes. Nevertheless, equation (3.75) provides a simple
form that is well-suited to our formulation, as will be shown.

Inserting equation (3.75) into the first term on the RHS of (3.74), this term (RHS1) becomes
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the following:

RHS1 =
N

∑
α=1

{
−

N

∑
η 6=α

{
∂φ α

∂xαη
+

∂φ η

∂xαη

}
·vα +

dφ α

dt

}
ψ(Xα −X)

=
N

∑
α=1

{
−

N

∑
η 6=α

{
∂φ α

∂xαη
+

∂φ η

∂xαη

}
·vα +

N

∑
η 6=α

∂φ α

∂xαη
·vαη

}
ψ(Xα −X)

=
N

∑
α=1

N

∑
η 6=α

{
− ∂φ α

∂xαη
·vα − ∂φ η

∂xαη
·vα +

∂φ α

∂xαη
·vα − ∂φ α

∂xαη
·vη

}
ψ(Xα −X)

=
N

∑
α=1

N

∑
η 6=α

{
− ∂φ η

∂xαη
·vα − ∂φ α

∂xαη
·vη

}
ψ(Xα −X)

=−
N

∑
α=1

N

∑
η 6=α

∂φ η

∂xαη
·vα

ψ(Xα −X)−
N

∑
α=1

N

∑
η 6=α

∂φ α

∂xαη
·vη

ψ(Xα −X)

We now switch dummy indices on the right term of the above expression (i.e. α↔ η) and use the
relation xηα =−xαη to obtain

RHS1 =−
N

∑
α=1

N

∑
η 6=α

∂φ η

∂xαη
·vα (ψ(Xα −X)−ψ(Xη −X)). (3.76)

Combining this result with equations (3.19) and (3.74), we arrive at

ρ0
de
dt

=
N

∑
α=1

N

∑
η 6=α

(
∂φ η

∂xαη
·vα

)
(Xαη ·∇XBαη)+

N

∑
α=1

mαbα ·vα
ψ(Xα −X). (3.77)

As before, this can be modified to

ρ0
de
dt

= ∇X ·

(
N

∑
α=1

N

∑
η 6=α

(
∂φ η

∂xαη
·vα

)
XαηBαη

)
+

N

∑
α=1

mαbα ·vα
ψ(Xα −X). (3.78)

Similar to our material frame analysis of the balance of energy for standard continuum theory,
we separate atomic motion from continuum motion by splitting the atomic velocities vα . However,
for a micromorphic continuum, this velocity becomes the sum of three terms,

vα = v(X, t)+ χ̇χχ(X, t) ·ΞΞΞα + v̂α(X, t), (3.79)

where χ̇χχ(X, t) ·ΞΞΞα now represents a continuum velocity associated with the microscale rotation and
deformation of the microelement containing atom α . Substitution of this expression into (3.78),
along with the aforementioned relation e = ε + 1

2v2 + 1
2I :

(
χ̇χχ

T · χ̇χχ
)
, results in the following upon
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simplifcation:

ρ0
dε

dt
+ρ0

dv
dt
·v+

(
ρ0

d2χχχ

dt2 · I
)

: χ̇χχ =

∇X ·

(
v ·

{
N

∑
α=1

N

∑
η 6=α

∂φ η

∂xαη
⊗XαηBαη

})

+∇X ·

(
χ̇χχ :

{
N

∑
α=1

N

∑
η 6=α

∂φ η

∂xαη
⊗ΞΞΞ

α ⊗XαηBαη

})

+∇X ·

(
N

∑
α=1

N

∑
η 6=α

(
∂φ η

∂xαη
· v̂α

)
XαηBαη

)

+ρ0b ·v+ χ̇χχ :

(
N

∑
α=1

mαbα ⊗ΞΞΞ
α

ψ(Xα −X)

)
+

N

∑
α=1

mαbα · v̂α
ψ(Xα −X)

(3.80)

Equation (3.80) can be further simplified in two ways. On the LHS, the expressions ρ0
dv
dt and

ρ0
d2χχχ

dt2 · I are replaced using the balance of linear and rotational momentum equations shown in
equations (3.59) and (3.60), respectively. On the RHS, we can relate each divergence term to a
corresponding continuum quantity. By using our new expression for inter-atomic forces defined in
equation (3.75), we notice that the 1st Piola-Kirchhoff stress P is

P =−1
2

N

∑
α=1

N

∑
η 6=α

fαη ⊗XαηBαη

=
1
2

N

∑
α=1

N

∑
η 6=α

{
∂φ α

∂xαη
+

∂φ η

∂xαη

}
⊗XαηBαη

=
1
2

{
N

∑
α=1

N

∑
η 6=α

∂φ α

∂xαη
⊗XαηBαη +

N

∑
α=1

N

∑
η 6=α

∂φ η

∂xαη
⊗XαηBαη

}

=
1
2

{
N

∑
η=1

N

∑
α 6=η

∂φ η

∂xηα
⊗XηαBηα +

N

∑
α=1

N

∑
η 6=α

∂φ η

∂xαη
⊗XαηBαη

}

=
1
2

{
N

∑
α=1

N

∑
η 6=α

∂φ η

∂xαη
⊗XαηBαη +

N

∑
α=1

N

∑
η 6=α

∂φ η

∂xαη
⊗XαηBαη

}

=
N

∑
α=1

N

∑
η 6=α

∂φ η

∂xαη
⊗XαηBαη .

Hence,

∇X ·

(
v ·

{
N

∑
α=1

N

∑
η 6=α

∂φ η

∂xαη
⊗XαηBαη

})
→ ∇X · (v ·P) = P : Ḟ+v · (P ·∇X) . (3.81)

78



Regarding the second divergence term in (3.80), we notice that the couple stress tensor (equa-
tion (3.71)) now has the form

M =
1
2

N

∑
α=1

N

∑
η 6=α

{
∂φ α

∂xαη
+

∂φ η

∂xαη

}
⊗ΞΞΞ

α ⊗XαηBαη .

Admittedly, it is not as easy to simplify this expression as it was to simplify the expression for P.
However, we note here that Delph asserted that any potential energy expression dependent on M
atoms within the N-atom system is equally divided among the M atoms [59]. For example, the
contribution for a 3-body energy term between atoms α , β and γ is divided equally into thirds for
φ α , φ β and φ γ respectively. Hence, this assertion results in the conclusion that while, in general,
φ α 6= φ η , it is the case that ∂φ α

∂xαη = ∂φ η

∂xαη since the portion of potential energy that provides non-zero
values of this derivative is the same for both atoms α and η . Hence,

M =
N

∑
α=1

N

∑
η 6=α

∂φ η

∂xαη
⊗ΞΞΞ

α ⊗XαηBαη ,

and,

∇X ·

(
χ̇χχ :

{
N

∑
α=1

N

∑
η 6=α

∂φ η

∂xαη
⊗ΞΞΞ

α ⊗XαηBαη

})
→ ∇X · (χ̇χχ : M) = M : (χ̇χχ∇X)+ χ̇χχ : (M ·∇X)

(3.82)

The third divergence term provides us with the definition for heat flux vector for a micromor-
phic system:

Q(X, t) =−
N

∑
α=1

N

∑
η 6=α

(
∂φ η

∂xαη
· v̂α

)
XαηBαη (3.83)

Combining (3.81), (3.82) and (3.83) into equation (3.80), along with the earlier definitions for
energy generation per unit mass (3.53) and body couple (3.73), we obtain:

ρ0
dε

dt
+(P ·∇X +ρ0b) ·v+

(
M ·∇X +P− P̄+ρ0c

)
: χ̇χχ =

P : Ḟ+v · (P ·∇X)+M : (χ̇χχ∇X)+ χ̇χχ : (M ·∇X)
−∇X ·Q+ρ0b ·v+ χ̇χχ : ρ0c+ρ0h

(3.84)

Upon simplifying this equation, we obtain

ρ0
dε

dt
= P : Ḟ+M : (χ̇χχ∇X)+

(
P̄−P

)
: χ̇χχ−∇X ·Q+ρ0h, (3.85)

which exactly matches the balance of energy equation derived by Eringen [68] and given earlier in
equation (3.61).
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3.5 Discussion

By constructing a material frame-based formalism similar to the spatial frame-based formalism
developed by Hardy, we have derived expressions for continuum theory variables based on atomic-
scale quantities. For an atomistic system governed by central force potentials, these expressions are
based on conventional continuum theory and include the 1st Piola-Kirchhoff stress tensor, a body
force field, a heat flux vector field, and an energy generation rate. For an atomistic system where
the inter-atomic potential is multi-body and directional in nature, these expressions are based on
micromorphic continuum theory and also include a couple stress tensor and a body couple tensor
field.

These expressions are distinct from both Hardy’s original formulation, as well as the many
other works discussed in the Introduction section, as they are for material frame-based continuum
variables. Exceptions to this are found in the text by Weiner [249, Chapter 4 and Appendix I in
Chapter 6] and the articles by Andia and colleagues [51, 50, 11, 12]. As mentioned earlier, Andia
et al. define an expression for P-K stress as a cell averaged quantity. Our expression is defined
at a single material point and depends only on the size of the volume associated with that point
in the sense that a minimum volume must be used to show consistency with expected continuum
behavior. Additionally, both Andia et al. and Weiner make the distinction between internal and
external forces, separating the interactions between atoms within the cell and the interactions be-
tween atoms with “ghost” atoms located across the periodic boundaries. This distinction is not
needed for our approach.

Our formulations are suitable for the analysis of solid mechanics problems. For simulations
involving fluid and gaseous states of matter, the concepts of a reference configuration and deforma-
tion gradient are not clear, and transformation from P-K stress to Cauchy stress would be difficult.
This would also occur for situations of dramatic molecular rearrangement, such as mixing (as hap-
pens in granular materials) or extended plastic deformation. In such cases, it would be advisable
to use the original spatial frame formulation developed by Hardy. The difficulty inherent to devel-
oping a spatial frame formulation for a micromorphic continuum was discussed earlier, and more
work is warranted to overcome this challenge.

The analyses presented in the Evaluation section clearly show that our derived expression for
P-K stress is consistent with a thermo-mechanical measure of stress despite the fact that it contains
only a potential and not a kinetic term, unlike the Cauchy stress expression derived by Hardy.
Our analysis also shows that our expression for P satisfies the Piola transformation σσσ = 1

J PFT .
By comparison, Weiner refers to his P-K stress expression as ‘non-thermodynamic’ and shows
that its transformation to the spatial frame results in only the potential portion of the virial stress
expression.

In order to show the consistency of our expression with continuum thermodynamics, we chose
our material configuration to be the zero temperature, undeformed state of the system simulated.
Unlike conventional continuum mechanics where the choice of zero stress reference configuration
and temperature are arbitrary, the selection of a zero temperature state as the reference configura-
tion is mandatory for our formulation. This requirement was discussed by Weiner [249, Chapter

80



4], who noted that for the case of anharmonic pair potentials, a zero value of P-K stress is achieved
only at zero temperature. This can be more easily understood by examining our expression for P-K
stress,

P =−1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗Xαβ Bαβ (X),

and comparing it with the expression derived by Hardy for Cauchy stress,

σσσ =−1
2

N

∑
α=1

N

∑
β 6=α

fαβ ⊗xαβ Bαβ (x)−
N

∑
α=1

mα v̂α ⊗ v̂α
ψ(xα −x).

Here, we see that if we arbitrarily select a given configuration to represent our material frame,
the first term on the RHS of the Cauchy expression will exactly equal the full value of the P-K
expression. However, this term will not equal zero for any system that has been equilibrated to a
non-zero temperature. For that case, it is apparent that the second term on the RHS will be equal to
a non zero value, and thus the first term must be equal in magnitude and opposite in sign in order
to produce zero Cauchy stress. Ergo, such a configuration will produce a non zero value of P-K
stress, and the relationship between P-K and Cauchy stresses will no longer hold.

Although our continuum formulations are distinctly different from the works by Delph and
Chen due to their material frame basis, it is interesting to notice that our formulations offers two
advantages. First, unlike in Delph’s derivation, our stress expression appears in both the linear
momentum and energy balance laws with no modification. Second, unike the work by Chen, the
balance laws our expressions satisfy are the same as from micromorphic continuum theory; no
separate “microscale balance laws” are needed. While it is certainly the case that time-averaging
will improve the consistency of our expressions with continuum theory (such as was shown for
stress expressions in this chapter and for Hardy’s heat flux expression in [248]), this averaging is
not a prerequisite towards connecting molecular simulation results with continuum formulations.

Finally, in order to relate the material frame variables defined here to their spatial frame coun-
terparts, it is necessary to define kinematic deformation variables such as the deformation gradi-
ent. It is interesting to note that few of the aforementioned articles establish such field variables.
However, in equation (3.14) we define a displacement field u consistent with the same localiza-
tion function and volumes used to define the thermodynamic variables. This field could easily be
used to construct a locally-varying deformation gradient expression. Also, in equations (3.66) and
(3.67) we derived expressions for the micro-deformation gradient χχχ and micro-gyration tensor ννν ,
respectively, the kinematic variables inherent to micromorphic continuum theory. It is interesting
to note that if the relationship xα = x + ξξξ

α is applied to equation (3.66), where ξξξ
α is the spatial

frame counterpart to ΞΞΞ
α , then it can also be shown that

χχχ(X, t) =

(
N

∑
α=1

mα
ξξξ

α ⊗ΞΞΞ
α

ψ(Xα −X)

)
·

(
N

∑
α=1

mα
ΞΞΞ

α ⊗ΞΞΞ
α

ψ(Xα −X)

)−1

. (3.86)

This expression for micro-deformation gradient bears a strong resemblance to the expressions de-
veloped by both Horstemeyer et al. [115, 116, 101] and Zimmerman [256] (including the relations
defined in Chapter 2) to define an atomic-scale deformation gradient. In their expressions, relative
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distances between an atom and its neighbors in both the reference and current configurations are
used to estimate a deformation gradient. Our expression more closely resembles the one derived
by Horstemeyer et al., who also considered interactions with multiple shells of neighbors and used
an analytic function (similar to ψ) to weight how the neighbors affect the local estimate of defor-
mation gradient. The expression given by equation (2.17) considers the specific case of ψ being
a Heaviside function defined over a volume that only encompasses the nearest neighbors to the
center point. Detailed comparisons between our micro-deformation gradient and the atomic-scale
equivalent defined in these works is deferred for future work.

3.6 Appendix: Non-symmetric Cauchy stress due to directional
bonding

It can be shown that inter-atomic potentials representative of directional bonding will result in a
non-symmetric Cauchy stress. To accomplish this, we use the “potential” portion of the Hardy
expression, σσσ = −1

2 ∑
N
α=1 ∑

N
β 6=α

fαβ ⊗xαβ B̃αβ (x), combined with our new expression for fαβ =

−
{

∂φ α

∂xαβ
+ ∂φ β

∂xαβ

}
. As a simple case, we consider the interaction of only 3 atoms (α , β and δ )

through a single 3-body potential energy term Φ,

Φ = Φ(xαβ ,xαδ ). (3.87)

This form fits the case of the 3-body term in the Stillinger-Weber potential [226] where α is the
center atom of the β -α-δ triplet and

Φ(xαβ ,xαδ ) = ελ exp(
γ

xαβ

σ
−a

)exp(
γ

xαγ

σ
−a

)
{

cos(θ)+
1
3

}2

, (3.88)

where ε , λ , γ , σ and a are fitted material parameters and

θ ≡ arccos(
xαβ ·xαδ

xαβ xαδ
). (3.89)

Using the relation φ α = φ α(xαβ ,xαγ , . . . ,xαN), the full energy Φ is partitioned equally among the
3 atoms, φ α = φ β = φ δ = 1

3Φ. However, in order to correctly take partial derivatives of these
individual energies, we must express the functional dependency for each energy correctly. For
atom α , the expression is trivial,

φ
α =

1
3

Φ(xαβ ,xαδ ), (3.90)

but for atoms β and δ , the expressions are

φ
β = φ

β (xβα ,xβδ ) =
1
3

Φ(xαβ ,xαβ +xβδ ) (3.91)

φ
δ = φ

δ (xδα ,xδβ ) =
1
3

Φ(xαδ +xδβ ,xαδ ) (3.92)
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In these relations, we have substituted xαβ + xβδ for xαδ in the expression for φ β since it cannot
depend directly on xαδ . Likewise for the φ δ term, we have substituted xαδ + xδβ for xαβ . Ob-
viously, clarity requires that any expression that uses Φ in a simple way must refer to its original
form shown in (3.87). So, when partial derivatives are taken, they must include terms that may
indirectly depend on certain variables. For example,

∂φ β

∂xαβ
=

1
3

(
∂Φ

∂xαβ
+

∂Φ

∂xαδ

∂xαδ

∂xαβ

)
=

1
3

(
∂Φ

∂xαβ
+

∂Φ

∂xαδ

)
. (3.93)

Equation (3.93) is easily understood. The first term inside the parentheses results from the deriva-
tive of Φ with respect to xαβ as it appears explicitly within the normal functional form of Φ, but
the second term is present because Φ also depends on xαδ , which itself depends on xαβ through
the relation xαδ = xαβ +xβδ . Since

∂φ α

∂xαβ
=

1
3

(
∂Φ

∂xαβ

)
, (3.94)

we can now calculate fαβ to be

fαβ =−

{
∂φ α

∂xαβ
+

∂φ β

∂xαβ

}

=−
{

1
3

(
∂Φ

∂xαβ

)
+

1
3

(
∂Φ

∂xαβ
+

∂Φ

∂xαδ

)}
=−

{
2
3

∂Φ

∂xαβ
+

1
3

∂Φ

∂xαδ

}
.

(3.95)

Similarly, for this example

fαδ =−
{

2
3

∂Φ

∂xαδ
+

1
3

∂Φ

∂xαβ

}
, (3.96)

It is interesting to note that the expression for fαβ in (3.95) involves derivatives with respect to
inter-atomic vectors other than just xαβ , and that it is not necessarily collinear with xαβ .

Combining the expressions in equations (3.95) and (3.96) with a similarly derived expression
for fβδ , the expression for Cauchy stress becomes:

σσσ(x, t) =−1
2

N

∑
α=1

N

∑
β 6=α

xαβ ⊗ fαβ B̃αβ (x)

=−xαβ ⊗ fαβ B̃αβ (x)−xαδ ⊗ fαδ B̃αδ (x)−xβδ ⊗ fβδ B̃βδ (x)

= xαβ ⊗
{

2
3

∂Φ

∂xαβ
+

1
3

∂Φ

∂xαδ

}
B̃αβ (x)+xαδ ⊗

{
1
3

∂Φ

∂xαβ
+

2
3

∂Φ

∂xαδ

}
B̃αδ (x)

+xβδ ⊗
{
−1

3
∂Φ

∂xαβ
+

1
3

∂Φ

∂xαδ

}
B̃βδ (x),

(3.97)

83



which can be simplified to

σσσ(x, t) = xαβ ⊗
{

2
3

∂Φ

∂xαβ
+

1
3

∂Φ

∂xαδ

}
B̃αβ (x)+xαδ ⊗

{
1
3

∂Φ

∂xαβ
+

2
3

∂Φ

∂xαδ

}
B̃αδ (x)

+
{

xαδ −xαβ

}
⊗
{
−1

3
∂Φ

∂xαβ
+

1
3

∂Φ

∂xαδ

}
B̃βδ (x).

(3.98)

To proceed further, we assume that the potential function Φ can be expressed an an alternative
function Φ̂ that depends only on the invariants xαβ , xαδ and θ (as defined in equation (3.89)):

Φ = Φ(xαβ ,xαδ ) = Φ̂(xαβ ,xαδ ,cosθ). (3.99)

This assumption is certainly true for the Stillinger-Weber 3-body term (3.88) and can be general-
ized for other potentials representative of directional bonding. Using (3.99), we obtain the relations
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(3.100)

where cθ represents cosθ . Substituting the above relations into equation (3.98), we clearly see that
the expression for σσσ(x, t) will contain many terms that are non-symmetric. Specifically, the quan-
tities xαβ ⊗xαδ and xαδ ⊗xαβ will both be present but will not have the same scalar coefficient, a
requirement for a symmetric tensor.

One result we can obtain is the expression for the average stress, σ̄σσ(t), for the entire volume V
of the system. Integrating both sides of equation (3.98), we obtain
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Substitution of (3.100) into (3.101), along with simplification of terms, results in the expression
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(3.102)

Clearly, the average stress for the system is a symmetric quantity. This explains why standard
continuum theory adequately describes the deformation of directional bonded materials such as
silicon. At the macroscopic scale, asymmetries in stress are probably minor and unnoticeable.
However, at the microscopic scale, these asymmetries may be significant and indicative of the
need for a microcontinuum theory.
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Chapter 4

Micropolar Small Strain Deformation
Theory
Principal Authors: Jason R. Mayeur, David L. McDowell and Douglas J.
Bammann

The initial stated objective of this project was to develop micro-continuum theories of crystal
plasticity that are more advanced than what is currently used in the existing literature by appealing
to the disclination concept. The genesis of this objective grew out of a series of previous works
by Clayton, Bammann, and McDowell [44, 45, 42, 46, 43, 47], and was motivated by at least
two related observations: i) as metallic single crystals undergo extreme deformation, they begin
to fragment and separate into subgrain and blocky structures which are characterized by different
characteristic length scales and ii) these structures are distinct in terms of their relative misorien-
ation of neighboring regions, including evolution of high-angle boundaries. It was posited that
the introduction of the (geometrically necessary, GN) disclinations, which is a rotational defect,
in addition to the commonly used GN dislocations within the framework of a continuum crystal
plasticity theory could be a valuable tool to describe such phenomena, particularly in relation to
high-angle boundaries. Their rationale being that the characteristic length introduced by GN dis-
locations is related to the subgrain size, while the characteristic length associated with the GN
disclinations is related to the cell block size, and that subgrain boundaries (low angles of misori-
entation) are composed of GN dislocations while cell blocks (high angles of misorientaiton) GN
disclinations. Serving as further motivation for incorporation of the disclination concept within a
continuum crystal plasticity model are several discrete models of grain boundaries (GBs), which
use groups of disclination dipoles or disclination structural units to characterize the structure of
high angle GBs because the description of such boundaries in terms of discrete dislocations is no
longer possible du e to overlapping of the dislocation cores.

As the work progressed, however, it was realized that while the rationale for including discli-
nations is solid, the finite deformation micropolar crystal plasticity theory presented in Clayton et
al. [47] is still incomplete as a starting point. As a result, the objectives of the work were modified
to focus more on the problem of enhanced GB descriptions within the framework of geometrically
linear micropolar crystal plasticity theory building upon the previous efforts of Forest and collabo-
rators [76, 77, 78, 79, 217]. In pursuit of these objectives several interesting discoveries have been
made, which have led us down a path that is somewhat different than what was originally proposed.

In what follows, a generalized continuum crystal plasticity model is developed to account for
size-dependent mechanical response, and additionally contributes a novel approach for the en-
hanced treatment of grain boundaries (GBs); specifically the role they play in slip obstruction,
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absorption, and transmission. The model development will be couched within the context of a mi-
cropolar continuum. Borrowing from previous work on micropolar single crystal plasticity [77],
we will explore alternate formulations which have formal analogies to non-crystallographically-
based micropolar plasticity theories (cf. [81] and references therein). It has been suggested by
Sievert et al. [217], that the micropolar approach can be used as a substitute to the more commonly
found extended crystal plasticity theories which include constitutive dependence on Nye’s [182]
dislocation density tensor in terms gradients of slip (or slip rates) [16, 72, 149]. Therefore, a main
contribution of this work will be to ascertain the predictive capabilities of micropolar single crys-
tal plasticity, and determining whether or not it is fruitful to advance its development instead of
pursuing the more traditional generalized crystal plasticity approaches.

Due to the uncertainty surrounding which type of micropolar plasticity framework will prove
to be the most advantageous, an enhanced GB treatment will be developed, as much as is possible,
such that it can be embedded into any general crystal plasticity theory. The proposed model will
account for the geometry of the incoming/outgoing slip planes, the GB orientation and structure,
and the evolution of the boundarys resistance to slip through an appropriate choice of internal state
variables (ISVs). In contrast to current state-of-the-art approaches for modeling GBs, which tend
to describe the increased slip resistance solely in terms of the presence of excess geometrically
necessary dislocations or jump discontinuity in the plastic distortion, we are motivated by experi-
mental observations to propose a non-associative plasticity model to describe the slip transmission
process. In this work, the GB model will be embedded within a modified version of the micropolar
single crystal treatment, and finite element (FE) simulations will be performed and compared to
related experiments and finer scale simulations. The framework will require guidance from mod-
els at lower length scales in the selection of the appropriate ISVs, specification of their evolution
equations, and stress-state dependence (yield function) for a given type of boundary.

The work represents advancements in both the development and understanding of a class of
generalized (micropolar) crystal plasticity models. This undertaking will provide guidance on
which type of micropolar formulation may be worth further pursuing as an alternative to the more
common types of slip-gradient based approaches to crystal plasticity. Moreover, a novel method-
ology describing the effectiveness of GBs against initial slip transfer as well as boundary strength
evolution is presented in terms of slip system geometry and GB structure. The model will be de-
veloped such that it is amenable for inclusion within arbitrary crystal plasticity models, and can
accept information from more detailed simulations or observations of dislocation/GB interactions.

4.1 Introduction

The emergence of engineering components with specimen and microstructural features with di-
mensions reaching into the submicron and nanometer regimes has driven the need to develop ad-
vanced material models capable of describing their often unique and size-dependent behavior as
compared to more conventional engineering components and materials. Classical continuum mod-
els, being devoid of any type of model-dependent length-scale lack the ability to adequately capture
such responses. An alternate motivation for incorporating length-scale parameters in continuum-
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level models arises out of the study of strain-localization and/or strain-softening problems. Within
the context of FE simulations, these types of boundary value problems exhibit pathological mesh
dependence of results with respect to the thickness and spacing of the localization bands. This
is due to the loss of Hadamard ellipticity of the governing equations for the classical continua.
To counter these types of issues, the notion of the generalized continuum was developed on sev-
eral different competing conceptual fronts. Some typical classes of generalized continua are those
based on: non-local integral formulations, gradients of internal state variables (ISVs), higher-
order gradients of fundamental kinematic quantities (i.e. , displacements), and independent micro-
deformations. There are also innumerable models which consist of different combinations of the
aforementioned frameworks. Non-local integral formulations are based on the selection of a partic-
ular kinematic or ISV quantity in which the non-local dependence is achieved by defining the quan-
tity of interest at a given location in terms of an influence integral over a finite spatial domain about
the point. Non-local gradient of ISV theories, as the name suggests, include additional constitutive
dependence on the gradient of the ISV at the material point. Theories incorporating higher-order
gradients of the fundamental kinematic quantities (often referred to as Grade-n theories) rely on
enriched definitions of deformation power, resulting in the appearance of hyper-stresses in gener-
alized balances of linear and angular momentum. Finally, the class of continua with independent
micro-deformations, sometimes referred to as continua with latent microstructure or micromorphic
continua, are theories in which variables associated with additional microstructure (scalar, vecto-
rial, or tensorial) are endowed to each continuum point. In such models, the micro-deformation
is assumed to operate independently of the macro-motion; as a consequence these theories have
non-classical expressions of deformation power and require the specification of additional bound-
ary conditions. In summary, generalized continuum models have been developed to address both
the mathematical and physical limitations of their classical continuum counterparts.

In polycrystalline metals, the grain size has long been considered as a critical microstructural
dimension related to the strength of the material dating back to the works of Hall [107]] and Petch
[186]. In their studies an empirical relationship between the mean grain size and the initial yield
strength was determined, and then subsequently extended by Armstrong et al. [14] to address the
entire plastic regime. The respective Hall-Petch (HP) and extended HP relationships, describe
in an average macroscopic way the effective resistance to dislocation transmission through GBs.
While the HP relationship is essentially universally accepted within the scope of conventional
grain-sized polycrystals, there is less agreement upon the physical origins of the observed effect.
As outlined in Evers et al. [73], there are three basic schools of thought describing the smaller
is stronger phenomenon in conventional micron grain-sized materials. The originally proposed
explanation was centered around the idea that dislocations, because they are obstructed at GBs,
form pile-ups which then activate dislocation sources in neighboring grains as a result of the stress
concentration at the tip of the pile-up [107, 186, 52]. However, as Evers et al. [73] point out,
a major flaw of this argument is that in BCC-structured materials, where no pile-ups have been
observed, the HP relation still holds. A second school of thought attributes the origin of the HP
effect to an increased amount of strain-hardening resulting from the accumulation of geometrically
necessary dislocations (GNDs) near the GBs [19]. As the grain size decreases, there is inherently
an increased degree of inhomogeneous plastic flow (i.e. , strain-gradients) which is directly related
to the GND density. It is argued in turn, that the increased dislocation density in the presence
of deformation heterogeneity leads to a reduction in the mean free path for mobile dislocation
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segments and produces an enhanced strengthening effect. The main drawback of this type of model
is that, as it stands, it can only predict the grain-size dependence in the strain-hardening regime
and not on the initial yield strength, although more recent works have addressed this issue by
calculating initial GB GND densities between neighboring grains based on lattice misorientation
[71]. A third possible explanation originally presented by Li and Chou [144] appeals to the role of
GBs acting as dislocation sources, which do not necessarily require the stress-concentration due
to a pile-up to be activated. Other sources of stress-concentration, such as those induced by GB
ledges or GB lattice mismatches aided by the elastic anisotropy of the neighboring crystals and/or
the presence of initial misfit dislocations, may serve as the initiators of plastic flow in this case.
One shortcoming of this explanation for the behavior of conventional grain-sized materials is that
it is commonly accepted that the initial stages of plastic deformation in these materials is due to
the motion of pre-existing mobile dislocation density within the grain interiors. In actuality, the
manifestation of the HP effect is probably the result of a combination of all the aforementioned
phenomenon.

The preceding discussion of the HP effect was presented within the context of the so-called
conventional grain-size polycrystals. With the emergence of ultra-fine grained (ufg) and nanocrys-
talline (nc) materials, a new chapter is opened in the discussion of the HP effect and some have
reported of its breakdown or in some cases the “inverse” HP effect (cf. [30] and references therein).
The breakdown of HP behavior is debated within the research community, with detractors attribut-
ing the anomalous response to poor processing techniques used in some of the earlier studies on
nc materials [32, 48, 130, 193]. Regardless of whether or not the HP slope for such materials be-
comes negative or is merely reduced is somewhat irrelevant in terms of the big picture, but what is
most important is the fact that the same type of dislocation processes which dominate in conven-
tional grain-sized materials do not dictate the mechanical response in nc materials. For example,
in nc materials there is very little, if any, pre-existing mobile dislocation density within grain inte-
riors and a much higher volume ratio of grain boundaries to grain interiors. Accordingly, for this
class of materials, a number of diverse models have been developed to explain the observed size-
dependent deformation behavior. Carlton and Ferreira [30] have classified these models into four
generic classes: dislocation-based, diffusion-based, GB shearing, and composite. The dislocation-
based models focus on the potency of GBs as dislocation sources/sinks in which a “dislocation
event” [247] is proposed to consist of a simultaneous nucleation/absorption process in which the
nucleated dislocation completely transverses the grain in a single “jump” and is absorbed by the
boundary on the opposite side. This is thought to be possible due to the lack of dislocation ob-
stacles within grain interiors. The diffusion-based and GB shearing models are quite diverse and
rest on the assumption that these alternate deformation mechanisms either replace or compete with
traditional dislocation-based inelastic deformation mechanisms. Finally, the composite-type mod-
els [165] usually consider the nc material as made up of either two (grain interior and boundary)
or three (grain interior, boundary, and triple point) distinct phases which may have different types
of constitutive laws and/or different material properties for each respective constituent. Again, as
with the traditional grain-sized materials, the mechanical behavior of nc materials is probably the
result of a combination of the above described micro-deformation mechanisms which depends on
the material, the manufacturing process, loading conditions, etc. In other words, there probably is
not a “universal” method of modeling all such materials in terms of one physical mechanism. What
can be said for these materials is that the increased number of GBs (especially high-angle GBs)
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and low initial mobile dislocation density within the grain interiors results in the accommodation
of plastic deformation by GBs playing an even more critical role in nc materials than they do in
their conventional grain-sized counterparts.

It is with these considerations in mind that we give our plan of proposed research centered about
the development of micropolar crystal plasticity models accounting for the influence of GBs. In
Section 4.2, relevant background and the current state of the art related to all aspects of the research
are reviewed and discussed. Section 4.3 presents a detailed description of the model formulation,
Section 4.4 covers the numerical implementation, and Section 4.5 discusses some early numerical
results. In conclusion, Section 4.6 summarizes the scope of what has been accomplished to date
and maps a path for the future progression of the work

4.2 Background

4.2.1 Generalized Crystal Plasticity

Traditional models of crystalline inelasticity (cf. [18]), as previously mentioned, are incapable
of predicting size-dependent mechanical behavior as the constitutive formulation does not include
an inherent length scale. The single crystal strength in this case is governed by strain-like ISVs
whose evolution is related to the rate of plastic shearing on active slip systems and the cumulative
amount of slip. Such ISVs, whether isotropic or kinematic in nature, are typically assumed to
be reflective of the scalar statistically stored dislocation density. The most common approach to
extending crystal plasticity to account for size effects is to appeal to the notion of GNDs. As
argued by Ashby [19], GNDs are a measure of the inhomogeneity of plastic flow in the material
which leads to additional strain-hardening. Because the heterogeneity of deformation within a
volume of material is directly related to the size of the microstructural constituents, size-dependent
mechanical behavior is a natural outcome. The origins of the connection between heterogeneous
states of strain, deformation incompatibility, and geometrically necessary defects can be traced
back to the early works of Kondo [129], Bilby et al. [28] and Kroner [133] amongst others, whereas
the connection between GNDs and lattice curvature is traced back to work of Nye [182].

As evidenced by the diversity of crystal plasticity models incorporating the effects of GNDs,
there are a number of ways to construct such a theory. Generally speaking, there are three main
ingredients to developing an elastoplasticity theory: kinematics, thermodynamics, and kinetics.
In the realm of kinematics one must define the continuum degrees-of-freedom (displacements,
rotations, micro-deformations, etc.), invariant strain or deformation measures (strain, torsion-
curvature, etc.), and introduce appropriate elastic-plastic decompositions of the deformation mea-
sures separating reversible and irreversible parts of the process. The thermodynamic portion of the
model involves defining the deformation power (energy principle), a free energy potential func-
tional which is separated into recoverable (elastic constitutive equations) and irreversible (specifi-
cation of ISVs and their evolution equations) parts, and the determination of mechanical balance
laws which is usually done employing the principle of virtual power [90, 157]. Additionally, an en-
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tropy inequality is usually specified and combined with the energy principle to deduce restrictions
on the constitutive equations (including kinetic relations) and determine the state laws.

When it comes to selecting the appropriate set of ISVs and specifying their evolution equations,
some authors prefer a consistent continuum thermodynamic approach [215, 230], while others opt
for more classical heuristic approaches [149, 73, 2]. Probably the most important model consider-
ation is whether or not to enhance the expression for deformation power to include a contribution
from either rate of the GND tensor or equivalently the slip rates. Inclusion of such terms leads
to theories with ancillary balance laws concerning the micro-forces which are work conjugate to
these newly added microstructural degrees-of-freedom (DOF). These micro-force balances which
augment the usual Newtonian force balances of linear and angular momentum are equivalent to the
so-called material or configurational force balances, which have been discussed in the monographs
of Gurtin [102] and Maugin [158]. Central to these theories, as stated by Gurtin [106] “is the
belief that theories of mechanics should account for the working associated with each independent
kinematical process”. Within Gurtins theory [106] this results in the introduction of a system of
micro-forces work conjugate to the slip rates and their gradients. The slip system level micro-force
balance coupled with the constitutive restrictions placed on the micro-forces derived from a purely
mechanical form of the entropy inequality results in what can be interpreted as the viscoplastic
yield conditions for each slip system. The notion of fictitious configurational forces acting on mi-
crostructural singularities dates back to the works of Peach and Koehler [184] and Eshelby [69].
The idea that these forces should be required to satisfy their own balance laws, however, is much
more recent, and in the case of dissipative material behavior (i.e. , plasticity, damage, etc.), these
advanced theories are still the subject of intense research and debate. One of the major concerns
regarding these formalisms is the question of specifying appropriate boundary conditions for the
non-standard kinematic quantities and conjugate driving forces. Additionally, due to the com-
plex structure of the governing equations of these models, they are not yet amenable to numerical
computation except under certain idealized conditions.

Counter to the approaches of enhanced deformation power are those that retain the classical
structure of the mechanical balance laws. In these types of models, there are two typical ways to
proceed with the model development and implementation. One method takes the GND densities
or slip gradients as additional degrees-of-freedom in the sense that within a finite element imple-
mentation of the constitutive framework, they serve as additional nodal DOF subject to their own
(non-working) balance equation. Some examples of models that fall under this category are Evers
et al. [70], Arsenlis and Parks [16] and Kuroda and Tvergaard [135] and like the micro-force the-
ories previously discussed, they require the specification of additional boundary conditions for the
weak form FE implementation of the GND density balance. One apparent drawback to this type
of model is that it seems to lead to two distinct types of boundary conditions; the so-called micro-
clamped (no slip at the boundary) or micro-free (unimpeded slip at the boundary) conditions,
whereas it would seem that more intermediate types of conditions would be needed to describe
GND evolution at more general types of interfaces (i.e. , GBs) where partial slip transmission oc-
curs. An alternative approach, sometimes referred to as the “low-order theories”, is that in which
the specification of additional boundary conditions on slip are not required. The works of Acharya
and Bassani [2], Meissonnier et al. [163], and Ma et al. [149] fall under this classification, and
the presence of GNDs is reflected merely through a contribution to the material strain-hardening
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without the influence of any type of slip constraints.

Regardless of the model type, another important issue is how the presence of GNDs is reflected
in the description of strain-hardening. A fairly standard approach [108] is the incorporation of the
GND density, ρGND, into an extended Taylor expression, i.e. τα = αµb

√
ρSSD +ρGND, where the

statistically stored dislocation density, ρSSD, is that which appears in classical crystal plasticity the-
ory and is function of the current slip rates as well as the amount of cumulative shear, whereas the
GND density, ρGND, captures the additional hardening due to slip gradients. While this isotropic
contribution to material hardening is thought to be important, it is frequently asserted that kine-
matic hardening associated with the long-range stresses (back stresses) caused by GNDs is the
more critical physical phenomenon. It is noted here that the common understanding is that the
gradient in the GND density (i.e. , second gradient of slip) is proportional to the back stress, and
not the GND density itself [98, 99]. This contribution appears naturally in the micro-force theories
(cf. Gurtin [106]), and is incorporated in more phenomenological ways in the works of [70, 17].

4.2.2 Grain Boundary Treatment within Crystal Plasticity

4.2.2.1 Experimental Observations and Fine-Scale Modeling Results

Considering the importance of dislocation/GB interactions determining the strength, ductility, and
fatigue/fracture properties of metals there have been several studies focused on determining a set of
criteria that can be applied to predict the likelihood of particular slip transmission events through
GBs. Early experimental efforts in this regard undertaken by Shen et al. [24, 40, 213, 214] and
Lee et al. [138, 139, 140, 141, 142, 198] led to the following set of rules to rank the preference
for potential reactions, which are hereafter referred to as the LRB (Lee, Robertson and Birnbaum)
criteria:

1. The angle between the intersection lines of the incoming and outgoing slip planes within the
GB plane should be as small as possible.

2. The magnitude of the Burgers vector of any residual dislocations left at the GB after trans-
mission should be small.

3. The resolved shear stress acting on the outgoing dislocations should be high.

These criteria underscore the importance of both GB and slip plane geometry, the dislocation
character, and the local stress state. Seeking to give the criteria a quantitative backing, de Koning
et al. [56] developed a continuum dislocation line tension model which considered a dislocation
(Frank-Read) source of a certain length and distance from the boundary within the framework of
isotropic elasticity. The model does not account for the atomic structure of the GB or the internal
stress field that it induces, but it does result in predictions consistent with the LRB criteria, and
enables a quantitative comparison of the critical stress required for transmission between different
interaction scenarios. Furthermore, they state that in terms of a crude approximation, the single
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most critical parameter in determining the constraint placed on slip transmission by the GB is
the ratio of the critical activation stress to the source activation stress when there is no boundary
present.

More recently, Dewald and Curtin [61, 60] have used the novel multi-scale framework of cou-
pled atomistic/discrete dislocation (CADD) to study the interaction of incoming dislocations with
a few different types of GBs in Al. The multi-scale nature of their code enables them to circumvent
some of the limitations imposed when studying similar processes in an entirely atomistic setting,
such as the limits on the size of the computation cell and the use of long-range periodic bound-
ary conditions. Specifically, they have studied the interaction of edge dislocation pile-ups with a
Σ11 symmetric tilt boundary in Al [60] as well as screw dislocation pile-ups interacting with Σ3,
Σ9, and Σ11 symmetric tilt boundaries in Al [61]. As expected, their studies underscore that the
interactions of a single dislocation with a specific type of boundary is insufficient for describing
the physics of the problem relevant to sustained plasticity. The interaction of the lead dislocation
in a pile-up depends on the prior history of dislocations that have already reached the GB, and in
particular on whether or not extrinsic GB dislocations (EGBDs) have been generated as a result of
these interactions. Depending on both the structure of the GB and the temperature, these EGBDs
may either be locally concentrated or distributed throughout the GB plane. As a result of the edge
dislocation study, they have proposed a set of amendments to the LRB criteria that account for
the resolved shear stress on multiple slip systems (not just those of nucleation/transmission), the
normal stress on the GB plane, and the step height at the slip plane intersection. In the related
study on screw dislocations, Dewald and Curtin find that Σ3 and Σ11 boundaries absorb the lattice
dislocations and generate EGBDs, while no transmission is ever observed. For the Σ9 boundary,
transmission is observed, but the critical stress depends on the nature of the pile-up and the loca-
tion of the slip plane intersection with the GB. It is pointed out that the site of slip transfer across
the GB was never observed to be coincident with the original slip plane intersection, and in some
scenarios transmission has occurred on non-Schmid planes. Emerging from this study is yet an-
other series of modifications to the original LRB criteria, which incorporates a dependence on the
shear stress resolved in the GB plane for slip transmission and on the size of the primitive vectors
of the GB for the generation of EGBDs. They acknowledge that these criteria may not be suitable
for more complicated types of boundaries, and that more studies are required to fully validate their
extensions to the LRB criteria which can be found in their cited articles. These works are just
a starting point in the studying of dislocation/GB interactions, and there is hope that continued
efforts along this front will eventually aid in the construction of more realistic treatments of GBs
within the frameworks of discrete dislocation and generalized continuum models.

4.2.2.2 Continuum Elastoplasticity GB Models

Motivated by the desire to include grain size and/or GB effects into continuum plasticity models,
several approaches have been adopted to achieve this goal. Here we exclude discussion on the
modeling of GBs with cohesive zone elements as we are primarily interested in capturing GB ef-
fects on the initial yield strength and the earlier stages of strain-hardening behavior as opposed to
phenomenological damage and failure mechanisms. The earliest and simplest extensions of tradi-
tional models consider a polycrystalline metal as a composite structure consisting of GB and grain
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interior phases [26, 87, 88]. By assigning different material parameters and sometimes additional
modes of deformation to each of the phases, a size-dependent mechanical response is predicted.
Such models do not take into account any information regarding nearest neighbor grains (misori-
entation, etc.) or GB plane orientation when assigning the differences in material properties, which
is typically done in a uniform, phenomenological manner.

On the opposite end of the spectrum are gradient-based plasticity models in which the plastic
strain, slip, or plastic distortion are taken as nodal DOF which then allows for the specification of
GB boundary conditions. These types of theories and the additional types of boundary conditions
they require have already been discussed in the Section 4.2.1 on generalized crystal plasticity, but
with the understanding that there is the potential for imposing conditions on GBs in addition to
the outer boundaries of the domain. Using this sort of approach, Evers et al. [71] have developed
a model that accounts for an initial GB-GND density based on the misorientation of neighboring
grains, providing a more physical backing to the core-mantle type of composite approach. Obvi-
ously, as the ratio of GB surface area to grain interior volume increases (i.e. , smaller grain size
while keeping the sample size fixed), the initial yield strength increases. Additionally, their model
allows for independent GND evolution in each grain by “double-meshing” GB interfaces, however
in their works to date they have only considered the two extreme micro-free and micro-clamped
boundary conditions. A similar theory that takes advantage of the misorientation differences be-
tween neighboring grains to assign and initial GB-GND density has been proposed by Counts et
al. [53, 54] to investigate the HP effect in fcc metals. Both theories maintain the classical form of
the deformation power.

Alternatively, there are formulations that incorporate the plastic strain and plastic strain gra-
dients into an enhanced expression for deformation power, and by taking advantage of this the-
oretical structure it is possible to postulate yield conditions (in terms of micro-force balances
as discussed earlier) for the GB interface [31, 3, 4, 5, 6, 7, 86, 85, 83, 84, 103, 104, 105]. In
these models, GBs, or other material interfaces, are treated as surfaces of discontinuity which pos-
sess the ability to store interfacial energy in terms of plastic strains and work-conjugate couple
stresses. By augmenting the expressions for the free energy of the body or equivalently the defor-
mation power to include the energy/working associated with the material interface, the interface
yield conditions (i.e. , micro-force balance augmented with constitutive equations) are given in
terms of a jump condition on the higher-order stresses at the interface and the derivative of the
interfacial energy potential function, Ξ. This approach allows one to apply intermediate types of
boundary conditions at material interfaces, yet as Ξ→ 0 and Ξ→ ∞ the limiting cases of micro-
free and micro-clamped, respectively, are achieved. Among these formulations Fredriksson and
Gudmundson [86, 85, 83, 84], Aifantis and Willis [5], Aifantis and Ngan [3], and Abu Al-Rub
[6, 7] have given treatments which do not explicitly consider crystalline kinematics, preferring to
deal with phenomenological plasticity. In contrast the series of papers by Gurtin and co-workers
[31, 103, 104, 105] delve into many additional issues that arise when the microstructural details
of slip are specifically considered. Fredriksson and Gumdmundson [86, 85, 83, 84] have exam-
ined the size-dependent behavior of thin films in which an elastic material is perfectly bonded to a
plastic material with an interfacial energy potential that is quadratic in the plastic strains. Aifantis
and Willis [5] and Aifantis and Ngan [3] have studied the deformation behavior of 1-D uniaxially
loaded bicrystals as well as periodic polycrystals with quadratic and more general nonlinear inter-
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facial energy potentials. The theory Abu Al-Rub et al. [8] propose contains an even more complex
form of the deformation power. While this form does not affect the interfacial treatment in this case
[6, 7], the authors do suggest a generalization of the interface potential to include a deformation-
independent term which could theoretically represent the surface energy of a free surface or the
initial free energy of a GB. Gurtin and co-workers [31, 103, 104, 105] provide the most detailed the-
oretical considerations of such interfacial yield and/or boundary conditions, mainly because they
have couched their theory within a crystalline kinematic framework which is furthermore based on
a principle of virtual power written at the individual slip system level. Gurtin [103] first introduced
the concept of a micro-frictional boundary condition for free surfaces, and then later [31] derived
the higher-order traction jump conditions at the slip system level for a GB. Continued evolution
of these ideas is advanced in Gurtin and Needleman [105], in which the traditional micro-clamped
boundary condition is replaced with a less-restrictive natural boundary condition that arises from
a slightly recast principle of virtual power. Most recently Gurtin [104] has introduced the concept
of slip interaction moduli which allows for a clearer interpretation of the boundary conditions and
constitutive dependencies at general interfaces.

For reasons pointed out in Ma et al. [150], the inclusion of an enhanced description of grain
boundaries in terms of an excess of local GNDs has its limitations within the setting of a contin-
uum model. Specifically, they discuss the shortcomings of two differing approaches i) an energetic
equivalence concept and ii) a misorientation equivalence concept. The energy equivalence concept
is based on translating the grain boundary energy into an equivalent array of dislocations via the
Read-Shockley [190] formula. The two cited drawbacks to this approach are the inability to deter-
mine the exact nature in which these grain boundary dislocations would act as obstacles to mobile
dislocations within their framework, and the disregard of the “tensorial nature” of the problem.
This is an abbreviated way of saying that a micromechanical model describing the resistance of
slip due to the presence of a GB should account for the geometry of the incoming and outgoing
slip systems in addition to the GB orientation. The misorientation concept is based on using Nye’s
dislocation density tensor calculated from the orientation jump across the grain boundary, and then
backing out an equivalent GND density to represent the boundary. In regard to this approach,
there are several shortcomings listed as well. Nye’s tensor, being defined in terms of small rotation
gradients, is incapable of describing high angle boundaries. Furthermore, detailed atomistic calcu-
lations show that for high angle boundaries, a discrete dislocation description of the boundary no
longer exists, and instead the structure and energetic properties of the boundary are best described
in terms of the structural unit models. Finally, as shown by Arsenlis and Parks [15], the mapping
of the GND tensor into a unique distribution of discrete dislocations is impossible due to the linear
dependency of the slip system vectors. Since the initial stages of plastic deformation are dependent
on the details of these dislocation arrangements, this non-uniqueness is unacceptable. To counter
the deficiencies of the energetic and misorientation approaches discussed above, Ma et al. [150]
propose to handle the issue of dislocation transmission through GBs within the framework of a
thermally activated event. In their work, the transmission probability for an incoming mobile dis-
location is related to the size of the residual dislocation debris (misfit dislocation) left behind at
the boundary upon transmission. In summary, they propose the following methodology: For each
incoming slip system, all of the possible transmission events for all of the outgoing slip systems
are analyzed in terms of conservation of the lattice defect, which is expressed in terms of a single
discrete dislocation in tensorial form. Using this conservation equation, they calculate the size of
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the residual GB dislocation for each of the outgoing slip systems which can be directly related to
the energy required to create the misfit dislocation. This additional activation energy is then added
to the usual activation energy for slip on a given system, thereby providing an additional resistance
to slip in the GB region.

A completely novel approach to the treatment of GBs has been proposed by Zikry and col-
laborators [20, 22, 23, 21, 124, 125, 255] in which they specify a system of coupled first-order
differential equations governing the evolution of mobile and immobile dislocation densities in an
otherwise classical crystal plasticity framework. The model accounts for generation, trapping, and
annihilation of dislocations, and furthermore tracks the convection of the mobile dislocation den-
sity through the mesh using a new and original FE formulation. When a sufficiently large enough
mobile density enters the GB region, the likelihood of transmission is determined through a set of
geometrical considerations based on the LRB criteria. Three different mobile dislocation/GB inter-
action scenarios are considered: i) full and partial dislocation density transmission from one grain
into neighboring grains ii) full and partial dislocation density transmission into GB and blockage
at neighboring grains and iii) dislocation density impedance and the formation of pile-ups. Within
their framework, they also use a composite-type of approach where GB regions are identified as a
separate phase with different initial densities of mobile and immobile dislocations than the grain
interiors.

In light of the previous discussions concerning the role of GBs in dictating the properties of
crystalline metals, and the need for developing more physically-based generalized continuum mod-
els of crystal plasticity, it is the goal of this research to make strides towards these pursuits. It is
with this in mind, that we pursue the development of a micropolar crystal plasticity model with an
enhanced treatment of GBs. As highlighted in the work of Dewald and Curtin, there is still much
to be learned about the interactions between different dislocation arrangements and general types
of GBs. Nevertheless, by taking their observations into account, it is possible to envisage a broad
framework which could be used to systematically explore the different types of dependencies that
slip in the GB region has on non-Schmid stresses, GB plane normal and shear stresses, etc. using
the model. As more general results become available from higher resolution simulations, they can
then be easily incorporated to the model.

4.2.3 Micropolar Elastoplasticity

The earliest extensions of micropolar theory describing elastoplastic materials occurred in the late
1960s and early 1970s [27, 146, 204]. These works typically dealt with relatively straight-forward
extensions of phenomenological Von Mises plasticity [27, 146, 204, 58] and fall under the category
of single-criterion models [81]. Upon the re-examination of the micropolar continuum in the early
1990s [58, 57, 63, 220] within computational frameworks, the main application of interest was
investigating the process of localization in strain-softening materials. Of interest was the ability
of the formulation to provide numerical stability to the otherwise mesh-sensitive, mathematically
degenerate problem that is encountered using classical continuum plasticity formulations more so
than the existence of a specific type of microstructure. As noted in the rather comprehensive re-
view article of Forest and Sievert [81], however, Von Mises plasticity may also be developed in a
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multi-criterion framework as well. Micropolar elastoplasticity has been used in a wide range of
applications for very different material systems including studying shear localization in granular
materials [9, 10, 64, 232, 233, 234, 244, 246], magnetic particle systems [131], thin shell formula-
tions [175], composites [33, 147, 151, 152, 251], and of course metals [76, 77, 78, 79, 62, 95, 177].
Most of the recent work in micropolar elastoplasticity has been advanced by four main groups
of collaborators: Grammenoudis and Tsakmakis [95, 92, 93, 94, 96, 97], Forest and co-workers
[76, 77, 217, 81, 80], Neff and co-workers [177, 176, 178, 179, 180], and Steinmann and co-
workers [63, 219, 220, 221, 222, 225]. Among the various works, there are discussions concerning
finite deformation micropolar elastoplasticity [217, 177, 93, 95, 220, 221, 202], the well-posedness
and uniqueness of the micropolar elastic-plastic BVP [178, 179, 180], appropriate forms of gener-
alized hardening rules [93], variational theorems [225], and the limiting cases of micropolar elasto-
plasticity and how they compare to different types of classical continuum models [92, 96, 176]. The
most relevant literature to this proposal are the extensions of micropolar elastoplasticity incorpo-
rating crystalline kinematic descriptions by Forest and co-workers. The finite deformation theory
is proposed by Sievert et al. [217] and then the geometrically linear theory is used to study slip
and kink band formation [76] and grain-size effects in fcc polycrystals [77]. Further elaboration
on these crystalline kinematics-based works is given in Section 4.3 outlining the proposed research
plan as they are the starting point of our work.

4.3 Model Formulation

4.3.1 Kinematics

4.3.1.1 General Micropolar Theory

In the case of small displacements and rotations, the kinematics of the micropolar continuum are
described by the displacement vector, u , and the independent micro-rotation vector, φφφ . Given
these degrees-of-freedom, a suitable set of deformation measures are the micropolar strain and
torsion-curvature which are defined as

εεε = ∇xu−E ·φφφ (4.1)

κκκ = ∇xφφφ (4.2)

where E is the 3rd order permutation tensor defined in equation (2.7), εεε is the infinitesimal microp-
olar strain tensor and κκκ is the infinitesimal micropolar torsion-flexure tensor. The overbar on the
strain and torsion-curvature tensors are used to denote the kinematic measures in regard to microp-
olar theory. The micropolar strain tensor is generally unsymmetric, but upon splitting the tensor
into symmetric and skew-symmetric parts, a more insightful perspective of its physical meaning
is gained. The symmetric part of the micropolar strain tensor, sym(εεε), is just the classical small
strain tensor, i.e. ,

sym(εεε) =
1
2

(∇xu+u∇x) = εεε (4.3)
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and can be interpreted in the usual manner, whereas the skew-symmetric part is given by the
expression

skw(εεε) =−E ·φφφ − 1
2

(∇xu−u∇x) = ΦΦΦ−ωωω (4.4)

where ΦΦΦ =−E ·φφφ is the infinitesimal micro-spin tensor and ωωω = 1
2 (∇xu−u∇x) is the infinitesimal

continuum spin tensor given by the skew-symmetric part of the displacement gradient. Clearly, the
skew-symmetric part of the micropolar strain tensor is a measure of the difference between the
micro-rotation and continuum rotation. In the special case where the microstructural and contin-
uum rotations coincide, the kinematic description reduces to that of the so-called constrained mi-
cropolar material (also referred to in the literature as indeterminate couple-stress theory) in which
the couple-stress is work conjugate to the gradient of the continuum rotation.

The two-dimensional geometric interpretation of these deformation measures is illustrated in
Figure 4.1 for a material element under pure shear. In the undeformed body, the strain at a material
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Figure 4.1. Geometric interpretation of the micropolar shear
strains.

point is characterized by considering the motion of two independent sets of vectors, dX1,dX2 and
D1,D2, the former being material vectors and the latter being attached to the material microstruc-
ture (drawn in red in the figure). During deformation the material and microstructural vectors are
transformed into their respective counterparts, dx1,dx2 and d1,d2. The material vectors undergo
both stretch and rotation, whereas the microstructural vectors undergo rigid rotation. In the figure,
u2,1 gives the magnitude of the angle of counter-clockwise rotation about the x3 axis of the ma-
terial vector dX1 whereas angle φ3 gives the magnitude of the counter-clockwise rotation of the
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microstructural vector D1. Therefore, the relevant micropolar tensorial shear strain components
ε12 and ε21 are the difference between the continuum and microrotations, i.e. , ε12 = u2,1−φ3 and
ε21 = φ3.

4.3.1.2 Compatibility Analysis of Classical and Micropolar continua

Note: A different convention for the micropolar deformation measures is used within this subsec-
tion in order to make direct comparisons between the classical and micropolar theories. Namely,
the transposes of equations 4.1 and 4.2 are used. Both conventions appear in the literature.

Within the context of continuum plasticity models, it is obvious that the classical approach fails
to describe size-dependent mechanical response due to the lack of an intrinsic length scale associ-
ated with the constitutive formulation. Numerous methodologies have been proposed to overcome
this issue, including but not limited to integral formulations of the constitutive equations, constitu-
tive dependence on higher-order displacement gradients and/or deformation measures, constitutive
dependence of gradients of internal state variables, as well as models of continua with discrete
microstructure or micromorphic models. In most of these models, however, the physical interpre-
tation of the included length scale is ambiguous. Questions persist as to whether the introduced
length scale is related to the size of the specimen, microstructural features, characteristic features
of the deformed microstructure such as slip bands, kink bands, dislocation cell wall thickness and
spacing, or some sort of combination of all of these things. Notable exceptions in this regard are the
crystallographically-based plasticity models, which incorporate the notion of the GND density ten-
sor that is related to the incompatibility of the elastic, or equivalently the plastic distortions. In the
classical (non-polar) case, a one-to-one correspondence can be shown between the discrete GND
density tensor [182] and the continuum representation of the GND density tensor given in terms
of gradients of crystallographic slips [15]. As an alternative to the classical approach, one may
consider a micropolar model of crystal plasticity [76, 77, 78, 79, 217]. Through the specification
of an evolution equation for, or a compatibility-based calculation of, the plastic torsion-curvature
[65], an approximate reflection of the GN dislocation density is included in a rather natural way.
The purpose of this section is to outline the connection between the micropolar plastic torsion-
curvature and the classical GND density tensor. To begin, the classical relationship between the
discrete and continuum GND density tensors is recalled, and then a similar analysis is performed
for the micropolar model of crystal plasticity.

Classical Case
Physically, the GND density is a measure of the non-redundancy (or polarity) of a general disloca-
tion ensemble over a given reference volume. In the case of considering discrete (not necessarily
straight) defect distributions over a given reference volume, Arsenlis and Parks [15] give a defini-
tion of the GND density tensor as

ααα = ∑
η

ρ
η

GNbη ⊗ξξξ
η

, (4.5)

where bη is the Burger’s vector and ξξξ
η

is the average tangent vector of the η th dislocation line and
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the η th scalar GN dislocation density is defined as

ρ
η

GN =
l
η

V
, (4.6)

where l
η is the secant length of the generally curved dislocation segment and V is the reference

volume. From a simple inspection of the units in the definition of equation (4.5) it is apparent that
GND density tensor has units of 1/length. In relating the above discrete definition of GND density
to variables readily available within the framework of continuum crystal plasticity, an appeal is
made to the analysis of the incompatibility of the elastic and/or plastic distortion fields, with the
total distortion, βββ , being the displacement gradient.

In the geometrically linear setting the total distortion is decomposed into elastic and plastic
parts as

βββ = u∇x = βββ
e +βββ

p (4.7)

The requirement of a single-valued displacement field within the body is manifested mathemati-
cally by requiring

curl(βββ ) = 0, (4.8)

which is the statement of linearized compatibility. If we then associate the incompatibility of the
individual elastic and plastic distortions with the GND density tensor, we arrive at the following
two equivalent definitions:

ααα = curl(βββ e) =−curl(βββ p) (4.9)

Adhering to the classical crystal plasticity assumption that the lattice remains unperturbed by the
plastic distortion associated with dislocation motion, the lattice stretches and rotates according to
the elastic distortion. Following the pioneering analysis of Nye [182], equation (4.9) can be used
to relate the GND density to the gradient of lattice strain and lattice curvature, i.e. ,

ααα = curl(βββ e) = curl(εεεe)+ curl(ωωωe) (4.10)

εεε
e = sym(βββ e) , ωωω

e = skw(βββ e) =−E ·ϑϑϑ e, (4.11)

The second-rank lattice curvature, κκκ , is introduced as the right operating gradient of the axial
vector ϑϑϑ

e associated with the skew symmetric part of the elastic distortion ωωωe, i.e.

κκκ = ϑϑϑ
e
∇x. (4.12)

Given these definitions, it can be shown that

curl(ωωωe) = κκκ
T − tr(κκκ)1, (4.13)

where 1 ≡ δi jei⊗ e j in index notation, δi j is the Kronecker delta function, and {ei} are the basis
vectors in Eulerian space. In the original work of Nye, the elastic strain term is neglected and the
GND density and lattice curvature are assumed to be related by the following reciprocal relations

ααα = κκκ
T − tr(κκκ)1 (4.14)

κκκ = ααα
T − 1

2
tr(ααα)1 (4.15)
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However, if we retain the term involving the elastic strain, the analogous relations are

ααα = curl(εεεe)+κκκ
T − tr(κκκ)1 (4.16)

κκκ = ααα
T − 1

2
tr(ααα)1− [curl(εεεe)]T (4.17)

These equations are often used by researchers to link experimental measurements of lattice curva-
ture to the GND density tensor [227, 228]. Alternatively, one can express the GND density tensor
in terms of the plastic distortion, i.e. ,

ααα =−curl(βββ p), (4.18)

where the plastic distortion is given as a summation of shears on crystallographic planes as

βββ
p = ∑

η

γ
ηsη ⊗nη . (4.19)

Here γη is the amount of shear strain on the η th slip plane, sη is the slip direction and nη is the
slip plane normal direction. Following Arsenlis and Parks, we may write equation (4.18) in terms
of slip system level quantities as

ααα =−curl(βββ p) =−∑
η

sη ⊗nη ×∇xγ
η , (4.20)

Considering the vector tη = sη ×nη , we can rewrite equation (4.20) as

ααα =−curl(βββ p) =−∑
η

sη ⊗ (tη × sη)×∇xγ
η =−∑

η

sη ⊗∇xγ
η · (tη ⊗ sη − sη ⊗ tη). (4.21)

Using the relationships between the slip gradients and the scalar edge and screw GND densities,
the expression can be rewritten as

ρ
η

GN(e)b =−∇xγ
η · sη , ρ

η

GN(s)b =−∇xγ
η · tη (4.22)

ααα =−∑
η

ρ
η

GN(s)bsη ⊗ sη +ρGN(e)bsη ⊗ tη . (4.23)

This expression is identical up to a sign with the expression given in equation (4.5), where the
following notations have been used:

ααα =−∑
η

ρ
η

GNbη ⊗ξξξ
η

, (4.24)

ρ
η

GN =

√(
ρ

η

GN(e)

)2
+
(

ρ
η

GN(s)

)2
(4.25)

ξξξ
η

=
ρ

η

GN(s)s
η +ρ

η

GN(e)t
η

ρ
η

GN
(4.26)

bη = bsη (4.27)
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From the definition of the edge and screw components of the GND density it is clear that the gra-
dient of slip in the direction of the dislocation line motion is the source of GND density, within the
context of the linearized compatibility treatment.

Micropolar Case
A micropolar or Cosserat material [67] is a special type of generalized continuum in which each
continuum point is assigned a rigid vectorial microstructure that is allowed to rotate independently
with respect to the continuum rotation defined by the skew-symmetric part of the total distortion.
Even considering the case of classical crystal plasticity outlined in the above section, one may be
thinking “The continuum and microstructure (lattice) rotate independently in that case too.” This
statement is true, but in the classical case the lattice rotation follows the portion of the continuum
rotation defined by the skew-symmetric part of the elastic distortion, and is not a degree of freedom
that contributes to the deformation power. Another way of viewing the difference between classi-
cal and micropolar crystal plasticity is within a numerical setting. In the classical model only the
displacement vector components are nodal degrees-of-freedom, whereas in the micropolar model
the displacement components are supplemented (in the geometrically linear case) by the compo-
nents of the lattice rotation vector. There are additional subtle differences between the two classes
of crystal plasticity theories that arise based upon the partitioning of the deformation process into
elastic and plastic parts, as well as more obvious differences that arise due to the necessity of
specifying additional constitutive assumptions related to the enhanced kinematic description.

As a point of departure and to highlight some of the differences between classical and microp-
olar crystal plasticity, a discussion of micropolar kinematics similar to that in the previous section
is elaborated. A deformation process in a micropolar material is specified by the continuum and
micro-motions. The discussion below follows closely the work of Forest et al. [77]. The contin-
uum motion, as in the classical case is defined in terms of the distortion, βββ , and the micro-motion
is defined in terms of the lattice spin tensor, ΦΦΦ. The relevant micropolar deformation measures
are the micropolar strain tensor, εεε , and the micropolar lattice torsion-curvature tensor, κκκ , where
the overbar indicates quantities associated with the micropolar theory and have been introduced in
Section 4.3.1.1. The micropolar strain and lattice torsion-curvature are defined as (recall the note
at the start of this sub-section about the different deformation measure convention used here)

εεε = u∇x +E ·φφφ = βββ −ΦΦΦ (4.28)

κκκ = φφφ∇x =−1
2
E : ΦΦΦ∇x (4.29)

We now assume that the following additive elastic-plastic decompositions hold (by assuming the
limit of small deformation), and that the plastic distortion is equal to plastic strain further com-
mentary on this kinematic assumption is shelved for the time being, and will be re-examined in the
section on constitutive model development. Hence,

βββ = βββ
e +βββ

p , εεε = εεε
e + εεε

p , βββ
p = εεε

p (4.30)

κκκ = κκκ
e +κκκ

p (4.31)

This kinematic assumption, namely that βββ
p = εεε

p, implies that the micro-rotation is purely elastic,
albeit generally different from the elastic continuum rotation, i.e. ωωωe 6= ΦΦΦ

εεε
e = εεε− εεε

p = βββ
e−E ·φφφ (4.32)
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This point of view is favored by Forest and collaborators and Neff [177], but Steinmann [221]
and Tsakmakis and Grammenoudis [93, 95] have presented theories in which the micro-rotation is
comprised of both elastic and plastic parts, i.e. ΦΦΦ = ΦΦΦ

e +ΦΦΦ
p.

The mathematical requirements for the existence of single-valued displacement and rotation
fields are expressed for the micropolar material as

curl(εεε)+κκκ
T − tr(κκκ)1 = 0 (4.33)

curl(κκκ) = 0 (4.34)

Through substitution of the elastic-plastic decompositions into the above expressions, we arrive at
the following micropolar GN defect densities

ααα = curl(εεεe)+(κκκe)T − tr(κκκe)1 =−curl(εεε p)− (κκκ p)T + tr(κκκ p)1 (4.35)

θθθ = curl(κκκe) =−curl(κκκ p) (4.36)

where ααα is the micropolar GN dislocation density and θθθ is the micropolar GN disclination density.
A micropolar GN disclination, as can be seen from equation (4.36), is a measure of the incompat-
ibility of the lattice torsion-curvature. In more general terms, the disclination is a linear rotational
defect originally envisioned by Volterra as a natural counterpart to the linear translational defect,
dislocations. The disclination concept has been used by many researchers to describe the structure
of grain boundaries [173, 174], the formation of defect substructures and the fragmentation process
in crystalline materials [195, 209, 210, 211]. However, the application of the disclination concept
in the continuum theory of crystal elastoplasticity has not advanced beyond the theoretical stage,
and furthermore, the validity of the notion of the “continuously distributed” disclinations has been
seriously called into question by Anthony [13]. For these reasons, in this section, discussion will
remain centered on the treatment of GN dislocations within micropolar crystal plasticity. The use
of the disclination concept will be addressed elsewhere in the report.

Considering equation (4.35), we see that the micropolar GND density has the same general
functional form as the GND density tensor in the classical case. However, we point out that in the
micropolar case, the elastic strain tensor, εεε

e, is generally unsymmetric, and the micropolar GND
density does not depend on the total lattice curvature as it does in the classical case. Splitting
the elastic micropolar strain into symmetric and skew-symmetric parts, we are able to see further
connections between the two GND density tensors, i.e. ,

sym(εεεe) = εεε
e , skw(εεεe) = ωωω

e−ΦΦΦ (4.37)

εεε
e = εεε

e +ωωω
e−ΦΦΦ (4.38)

curl(εεεe) = curl(εεεe)+
(

κκκ
T −κκκ

T
)
− (tr(κκκ)− tr(κκκ))1 (4.39)

ααα = curl(εεεe)+
(

κκκ
T −κκκ

T
)
− (tr(κκκ)− tr(κκκ))1+(κκκe)T − tr(κκκe)1 (4.40)

Substitution of the above expression (4.40) back into equation (4.35) results in the following rela-
tionship between the classical and micropolar GND density tensors:

ααα = ααα− (κκκ p)T + tr(κκκ)1 (4.41)
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As can be seen from equation (4.41), the micropolar GND density tensor derived from compatibil-
ity requirements of the micropolar strain tensor is not consistent with the physical definition of the
discrete GND tensor in the presence of plastic curvature, i.e. ,

ααα 6=−∑
η

ρ
η

GNbη ⊗ξξξ
η

if κκκ
p 6= 0 (4.42)

The physical interpretation of ααα in terms of crystallographic quantities is rather unclear at this
point.

Another interesting tangent that was pursued in terms of shedding light on the issue of finding a
relation between GNDs and plastic torsion-curvature, is the work of Ehlers et al. [65] in which they
argue that, within the geometrically linear setting, a micropolar elastoplasticity model that assumes
an additively decomposed micropolar strain tensor automatically implies (through compatibility
conditions) that the curvature must also be additively decomposed. In addition, they argue that the
specification of an independent micropolar plastic curvature evolution equation is an impossibility.
Considering that such a specification, in fact, has been pursued by many researchers (including the
present work), the details of their arguments have been worked through and are summarized below.
As a starting point, we form the difference between two gradients of the micropolar strain tensor
as follows:

εεε∇x = (u∇x)∇x +E ·φ∇x⇒ ε i j,kei⊗ e j⊗ ek =
(
ui, jk +Ei jmφm,k

)
ei⊗ e j⊗ ek (4.43)

εεε∇
23/T
x = (u∇x)∇

23/T
x +E ·φ∇

23/T
x ⇒ ε ik, jei⊗ e j⊗ ek =

(
ui,k j +Eikmφm, j

)
ei⊗ e j⊗ ek (4.44)

where the notation ( )i j/T indicates transposition of the ith and jth basis for higher-order tensors.
By subtracting equation (4.44) from (4.43) and taking advantage of the interchangeability of the
order of differentiation on the displacement field, we obtain

ε i j,k− ε ik, j = Ei jmφm,k−Eikmφm, j (4.45)

Now by performing the double-contraction of the permutation tensor with the two left most indices
of equation 4.45 we have the expression

Epi j
(
ε i j,k− ε ik, j

)
= Epi j

(
Ei jmφm,k−Eikmφm, j

)
(4.46)

Taking advantage of the E −δ identities, the RHS of equation (4.46) can be simplified to

Epi j
(
ε i j,k− ε ik, j

)
= Epi jEi jmφm,k−Epi jEikmφm, j

= Ei jpEi jmφm,k−Ei jpEikmφm, j

=
(
δ j jδpm−δ jmδp j

)
φm,k−

(
δ jkδpm−δ jmδpk

)
φm, j

= 2δpmφm,k−φp,k +δpkφ j, j

= φp,k + tr(φφφ∇x)δpk

= κpk + tr(κκκ)δpk (4.47)

Expressing equation (4.47) in direct notation,

E :
(

εεε∇x− εεε∇
23/T
x

)
= κκκ + tr(κκκ)1 (4.48)
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To eliminate the trace term from the previous equation we revisit equation (4.33) and write

tr(κκκ)1 = [curl(εεε)]T +κκκ (4.49)

The curl term can be rewritten in terms of the appropriately defined gradient operator and contrac-
tion with the alternator tensor as follows:

[curl(εεε)]T = Ei jkεm j,kei⊗ em

=−Eik jεm j,kei⊗ em

=−E : εεε∇
13/T
x (4.50)

Substitution of (4.50) into (4.49) and then inserting the result back into (4.48) and solving for the
micropolar curvature gives the following relation between the micropolar torsion-curvature and
various gradients of the micropolar strain tensor, i.e. ,

κκκ =
1
2
E :
(

εεε∇x + εεε∇
13/T
x − εεε∇

23/T
x

)
(4.51)

Since the gradient is a linear operator, an additive decomposition of the micropolar strain tensor
then implies an additive decomposition of the micropolar torsion-curvature tensor, such that the
evolution equation for the plastic torsion-curvature is determined once the evolution equation for
the micropolar plastic strain rate is given, i.e.

κ̇κκ
p
=

1
2
E :
(

ε̇εε
p
∇x + ε̇εε

p
∇

13/T
x − ε̇εε

p
∇

23/T
x

)
(4.52)

However, the problem again is that the strains are not nodal variables and therefore taking spatial
derivatives of them requires modification of the standard finite element practices. It would seem
that this is why independent (from the plastic strain) specification of the plastic micropolar torsion-
curvature flow rule without admitting redundancy within the numerical setting is possible. If we
now substitute in the relationship between the plastic micropolar strain and the crystallographic
shears (equation (4.19) into equation (4.51) and simplify following the procedures of equations
(4.21)-(4.27), the following results are obtained:

E : εεε
p
∇x = ∑

η

{(nη ·nη) tη ⊗ γ
η

∇x− (tη ·nη)⊗ γ
η

∇x}= ∑
η

tη ⊗ γ
η

∇x (4.53)

E : εεε
p
∇

13/T
x = ∑

η

{(γη
∇x · sη) tη ⊗ sη − (γη

∇x · tη)sη ⊗ sη}=−∑
η

ρ
η

GNξξξ
η

⊗bη = ααα
T (4.54)

E : εεε
p
∇

23/T
x = ∑

η

{(γη
∇x ·nη) tη ⊗nη − (γη

∇x · tη)nη ⊗nη} (4.55)

Quite frankly, the physical meaning of equations (4.53) and (4.55) in terms of their crystallographic
significance is not clear at this point. To our knowledge, this is the first time these results have been
derived, and obviously they are not related to the classical GND density tensor in a one-to-one
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correspondence. Insertion of (4.53)-(4.55) into (4.52) we have the following relationship between
the plastic curvature and slip gradients

κκκ
p =

1
2

(
ααα

T +∑
η

{tη ⊗ γ
η

∇x− (γη
∇x ·nη) tη ⊗nη +(γη

∇x · tη)nη ⊗nη}
)

(4.56)

Furthermore, if we now plug this expression back into equation (4.41) we arrive at

ααα =
1
2

(
ααα

T −2∑
η

{γη
∇x⊗ tη − (γη

∇x ·nη)nη ⊗ tη +(γη
∇x · tη)nη ⊗nη}+3b∑

η

ρ
η

GN(s)1

)
,

(4.57)
where

tr(κκκ p) =
3b
2 ∑

η

ρ
η

GN(s)1 (4.58)

What the above results seem to indicate is that both the micropolar GND density tensor and the
micropolar plastic torsion-curvature tensor contain information concerning the defectiveness of the
crystalline body in addition to the classical GND density tensor. The physical significance of these
additional terms is not understood at this time. In light of this uncertainty, it is our decision moving
forward to adopt the point of view of Forest et al. [77] that the plastic micropolar torsion-curvature
is approximately related to the quantity of GNDs within the body. In addition, we will later specify
an evolution equation for the plastic micropolar torsion-curvature independent of the restriction
imposed by equation (4.52) as have the majority of researchers in working with the geometrically
linear theory of micropolar elastoplasticity.

4.3.2 Balance Laws and Thermodynamics

4.3.2.1 Mechanical Balance Laws and the Principle of Virtual Work

In the absence of body forces and couples, the local forms of the balance of linear and angular
momentum for a micropolar continuum in static equilibrium are given as

div(σσσ) = 0 in V (4.59)

div(m)+E : σσσ = 0 in V (4.60)

where, for a tensor A, div(A) ≡ ∇x ·A, σσσ is the Cauchy force-stress tensor and m is the Cauchy
couple-stress tensor. External work is performed on a volume element of the material through
the application of force- and couple-traction vectors related in the standard way to the force- and
couple-stress tensors, i.e. ,

T = n ·σσσ on ∂V (4.61)

M = n ·m on ∂V (4.62)

where n is the unit vector normal to the surface of the application of the traction vector. To derive
the weak form of the balance equations used in the finite element formulation presented in a later
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section, the usual steps are employed. First, the equilibrium equations are multiplied by arbitrary
variations in the kinematic fields; in this case the linear momentum equation by a displacement
variation, δu, and the angular momentum equation by a variation of the microrotation vector, δφφφ .
The scalar equations are then integrated over an arbitrary volume of material. After integrating by
parts and applying the divergence theorem, the two intermediate equations (4.64) and (4.66) are
obtained, i.e. , ∫

V
div(σσσ) ·δudV = 0 =

∫
V

[div(σσσ ·δu)−σσσ : ∇x(δu)]dV (4.63)∫
S

n ·σσσ ·δudS =
∫

V
σσσ : ∇x(δu)dV (4.64)∫

V
(div(m)+E : σσσ) ·δφφφdV = 0 =

∫
V

[div(m ·δφφφ)−m : ∇x(δφφφ)+(E : σσσ) ·δφφφ ]dV (4.65)∫
S

n ·m ·δφφφdS =
∫

V
[m : ∇x(δφφφ)− (E : σσσ) ·δφφφ ]dV (4.66)∫

S
(T ·δu+M ·δφφφ)dS =

∫
V

(σσσ : δεεε +m : δκκκ)dV (4.67)

The final result of equation (4.67) is achieved by adding equations (4.64) and (4.66), and substitut-
ing in the kinematic relations given in equations (4.1) and (4.2) as well as the traction definitions
given in equations (4.61) and (4.62). Equation (4.67) is the starting point for the derivation of the
finite element equations.

4.3.2.2 Thermodynamics

In this section a general overview of the thermodynamic analysis of a geometrically linear mi-
cropolar elastoplastic material is given within the context of internal state variable theory for an
isothermal deformation process. The steps leading to the deduction of the state laws and the re-
duced dissipation inequality mirror those in the classical case. For a micropolar continuum the
local time rate of change of internal energy is given as

ρU̇ = σσσ : ε̇εε +m : κ̇κκ (4.68)

where ρ is the material density and U is the specific internal energy. Introducing the specific
Helmholtz free energy potential as Ψ = U −T ηs, where T is the absolute temperature and ηs is
the specific entropy, taking its time derivative, and combining equation (4.68) with the entropy
inequality,

ρη̇s ≥ 0, (4.69)

leads to the dissipation inequality for the micropolar material,

−ρΨ̇+σσσ : ε̇εε +m : κ̇κκ ≥ 0. (4.70)

Given a specific Helmholtz free energy potential Ψ(εεεe,κκκe,ζ η

i ) that depends on elastic microp-
olar strains, torsion-curvatures, and a set of scalar strain-like slip and/or torsion-curvature system
level ISVs, ζ

η

i , where the upper index refers to the slip and/or curvature system index and the
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lower index refers to the ith ISV associated with the η th system, the total time derivative of the
potential can be expressed as

Ψ̇(εεεe,κκκe,
{

ζ
η

i
}
) =

∂Ψ

∂εεε
e : ε̇εε

e
+

∂Ψ

∂κκκ
e : κ̇κκ

e
+

Nsys

∑
η=1

NISV

∑
i=1

∂Ψ

∂ζ
η

i
ζ̇

η

i . (4.71)

In equation (4.71), Nsys, is the total number of slip and torsion-curvature systems. Depending on
whether a single or multi-criterion single crystal micropolar crystal plasticity model is used, the
number of ISVs will differ. Insertion of this result back into (4.70) leads to the expression(

σσσ −ρ
∂Ψ

∂εεε
e

)
: ε̇εε

e
+
(

m−ρ
∂Ψ

∂κκκ
e

)
: κ̇κκ

e
+σσσ : ε̇εε

p
+m : κ̇κκ

p−
Nsys

∑
η=1

NISV

∑
i=1

rη

i ζ̇
η

i ≥ 0, (4.72)

from which the following state laws can be deduced,

σσσ = ρ
∂Ψ

∂εεε
e , m = ρ

∂Ψ

∂κκκ
e , rη

i = ρ
∂Ψ

∂ζ
η

i
, (4.73)

and where the dissipation inequality is rewritten as

σσσ : ε̇εε
p
+m : κ̇κκ

p−
Nsys

∑
η=1

NISV

∑
i=1

rη

i ζ̇
η

i ≥ 0. (4.74)

In equations (4.73) and (4.74), rη

i , the work conjugate of ISV ζ
η

i , is referred to as a threshold stress.
Upon specification of evolution equations for the micropolar plastic strain, torsion-curvature, and
ISVs, the thermodynamic analysis can be carried out in more detail. Both single and multi-criterion
models are presented in the following section.

4.3.3 Single Crystal Constitutive Model

In the following section, micropolar crystal plasticity is discussed in terms of potential ways that
the elastoplastic constitutive equations may be formulated on a crystallographic basis. To date,
the series of papers by Forest and collaborators [76, 77, 78, 79, 217] are the only works that have
emerged in this vein and have been implemented within the FE framework. They have developed
a multi-mechanism, multi-criterion model of single crystal elastoviscoplasticity, and have used it
to study the differentiation between shear and kink banding in single crystals oriented for single
and double slip, grain-size strengthening effects in fcc polycrystals, and size-dependent precipitate
strengthening effects in nickel-base super alloys. A viscoplastic formulation is adopted to avoid the
potential difficulty of having indeterminate plastic strain and/or torsion-curvature rates. The only
inelastic deformation mechanisms considered are the plastic shearing due to the motion of dis-
locations, and the development of plastic torsion-curvature resulting from the presence of excess
dislocations of the same sign, GNDs. The flow rules for plastic strain and torsion-curvature are
independently associative and therefore maintain a normality structure in their work. The present
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work will explore alternative formulations which have formal analogies to some of the develop-
ments discussed in the more general micropolar plasticity literature.

For the case of small displacements and micro-rotations we assume that micropolar strain and
torsion-curvature tensors can be additively decomposed into elastic and plastic parts

εεε = εεε
e + εεε

p (4.75)

κκκ = κκκ
e +κκκ

p (4.76)

The elastic response for the linear isotropic micropolar continuum is then given by the following
two equations for the force- and couple-stress tensors, σσσ and m, respectively, i.e. ,

σσσ = C : εεε
e = λ tr(εεεe)1+(µ

∗+2µc)εεε
e + µ

∗ (εεεe)T (4.77)

m = D : κκκ
e = ℵtr(κκκe)1+i(κκκe)T + κκκג

e (4.78)

where the 4th rank elasticity tensors may be written as

C = λ1⊗1+2µsym(I)+2µcskw(I) (4.79)

D = ℵ1⊗1+2isym(I)+2גskw(I) (4.80)

For these expressions, I ≡ δikδ jlei⊗ e j⊗ ek⊗ el . Note that 1⊗ 1 = δi jδklei⊗ e j⊗ ek⊗ el 6= I. In
the force-stress equation, λ is the classical Lamé constant, µc is the micropolar couple modulus,
and µ∗ is the difference between classical shear modulus and the micropolar couple modulus, i.e.
, µ∗ = µ−µc. Similarly, in the couple-stress equation ℵ, i and ג are constants of proportionality
between the elastic portion of the torsion-curvature tensor and the couple stress. The micropolar
couple modulus µc can be additionally related to the classical shear modulus through the coupling
parameter [74], N, via the relation µc = N2µ/

(
1−N2), where the coupling parameter is restricted

such that 0≤ N ≤ 1. Rewriting equation (4.77) in terms of symmetric and skew-symmetric parts,
yields

σσσ = λ tr(εεεe)1+2µεεε
e +2µc (ΦΦΦ−ωωω

e) (4.81)

where we have used the fact that the symmetric part of the micropolar strain tensor is nothing
more than the classical infinitesimal strain tensor, i.e. , sym(εεεe) = εεεe. When written in this form,
it would seem that when the skew-symmetric part of the elastic strain tensor vanishes and/or the
micropolar couple modulus is zero, the material behaves in the classical sense. Although this state-
ment seems to be reasonable at first glance, it is not entirely correct as the constitutive response of
the micropolar continuum also depends on the gradient of the micro-rotation, or torsion-curvature.
In other words, even if ΦΦΦ−ωωωe = 0, this does not necessarily imply that the gradient of micro-
rotation is also zero. If the torsion-curvature is non-zero there will be couple-stresses within the
body, as shown in equation (4.78), and therefore the continuum response would be non-classical in
the sense that there will be additional stored energy in the material due to work-conjugate couple-
stresses and torsion-curvatures. If, however, the material constants ℵ, i and ג in equation (4.78)
are chosen to be suitably small, then the magnitude of the couple-stresses would be such that the
asymmetry of the force-stress tensor could be considered insignificant. As can be inferred from
the constitutive equations, the elastic response of an isotropic micropolar continuum depends on
six elastic constants: the two classical ones, λ and µ , and the other four constants µc, ℵ, i, and .ג
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To complete the constitutive model, we must specify the evolution equations for the micropolar
plastic strain, torsion-curvature, and ISVs. We have focused on a model constructed analogously
to that proposed in Forest et al. [77], which is a so-called multi-criterion model. This means that
independent yield functions are used for the micropolar strain and torsion-curvature, and there-
fore there are two plastic parameters to be determined from the consistency conditions and/or
given through viscoplastic relations. Any cross-coupled hardening effects in the multi-criterion
model enter via explicit dependence in the ISV evolution equations. Another possibility is the so-
called single criterion model, which has been used in macroscopic J2-type extensions of micropolar
elastoplasticity. This type of formulation has not been employed in concert with micropolar crystal
plasticity theory, and may possess different advantages and capabilities as compared to the multi-
criterion theory. Since this aspect of the work is a relatively new development within the scope
of the project, a tentative presentation of the model is discussed after the recapitulation of the
multi-criterion model.

4.3.3.1 Multi-criterion Model

The multi-criterion model presented in this section is that proposed by Forest et al. [77], and the
basis of the formulation is the introduction of distinct viscoplastic multipliers for both strain and
torsion-curvature evolution. The evolution equations for the micropolar plastic strain and torsion-
curvature are written as sums over the contributions from the η th slip systems in the general forms,
i.e. ,

ε̇εε
p
= ∑

η

γ̇
ηNη (4.82)

κ̇κκ
p
= ∑

η

ϕ̇
ηNη

c (4.83)

where γ̇η and ϕ̇η are the slip system level plastic multipliers related to slip and torsion-curvature,
respectively, and Nη and Nη

c give the directions of plastic strain and torsion-curvature, respec-
tively in stress space. Following Forest et al. [77], the specific flow rules are given in terms of
crystallographic directions as

ε̇εε
p
= ∑

η

γ̇
ηZη , Zη = nη ⊗ sη (4.84)

κ̇κκ
p
= ∑

η

ϕ̇η

`η
p

Hη , Hη = sη ⊗ tη (4.85)

where `η
p is a characteristic length associated with the development of plastic curvature, and nη , sη ,

and tη are unit vectors in the slip system normal, slip, and transverse directions, respectively. The
flow rules are completed by specifying the functional forms relating the shear and torsion-curvature
rates to the appropriate driving forces, which are given by standard viscoplastic power-law forms,
i.e. ,

γ̇
η = γ̇0

(
〈|τη |− rη〉

gη

)m

sgn(τη) (4.86)
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ϕ̇
η = ϕ̇0

(〈∣∣πη/`η
p
∣∣− rη

c
〉

gη
c

)mc

sgn(πη) (4.87)

where τη = σσσ : Zη and πη = m : Hη are the respective driving forces for the shear and torsion-
curvature rates, rη and rη

c are threshold force- and couple-stresses, gη and gη
c are the reference

force and couple-stresses, and m and mc are constants. By combining equations (4.84)-(4.87) and
comparing them to equations (4.82) and (4.83), it is easy to see that

Nη = Zηsgn(τη) (4.88)

Nη
c =

1
`η

p
Hηsgn(πη) (4.89)

If we think about the above model in terms of slip system level yield functions and plastic poten-
tial functions, it becomes apparent the model is associative and displays the classical normality
structure, i.e.

Fη := |τη |− rη ⇒ Nη =
∂Fη

∂σσσ
= Zηsgn(τη) (4.90)

Fη
c :=

∣∣∣∣πη

`η
p

∣∣∣∣− rη
c ⇒ Nη

c =
∂Fη

c

∂m
=

1
`η

p
Hηsgn(πη) (4.91)

where Fη and Fη
c are the slip system level yield functions for the plastic strain and torsion-

curvature, respectively, for the η th slip system. The yield function for the plastic torsion curvature
is expressed in units of stress, and its derivative with respect to the couple-stress tensor yields
the appropriate expression for the direction of the plastic torsion-curvature rate. It is noted that
the evolution equation for the plastic torsion-curvature contains only the term associated with the
curvature development due to the presence of edge dislocations [77].

The constitutive response is completed upon specification of the evolution equations for the
threshold force- and couple-stresses, rη and rη

c , respectively. Thus far, only relatively simple
forms of hardening equations have been used in interest of probing the models predictive capa-
bilities before moving on to more physically-inspired (i.e. , dislocation-based) ISVs and evolution
equations in future works. The threshold stress evolution equations are given as

ṙη = ∑
υ

(
A1qηυ

1 −Brη
)
|γ̇υ |+A2qηυ

2 |ϕ̇
υ | (4.92)

ṙη
c = ∑

υ

A3qηυ

3 |ϕ̇
υ | (4.93)

qηυ

i = qi +(1−qi)δ
ηυ (4.94)

where A1, B, A2, A3 and {qi} are constants to be specified. Equation (4.92) is a typical direct
hardening and dynamic recovery type of formulation augmented with the additional hardening
term associated with plastic torsion-curvature and the qηυ

i give the ratios of self to latent hardening.
The reduced dissipation inequality for the multi-criterion model is given as

∑
η

|τη | γ̇η +∑
υ

|πυ | ϕ̇υ −

(
∑
η

rη
ζ̇

η +∑
υ

rυ
c ζ̇

υ
c

)
≥ 0. (4.95)
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4.3.3.2 Single Criterion Model

The single criterion model presented below is a new development in this work, and has not been
completely investigated. Therefore, a brief overview is given in this section, with the intent being
to elaborate more in future publications which stem from this project. As before, the plastic strain
and torsion-curvature evolution equations are given by general forms as sums over the slip system
level mechanisms in terms of the plastic multiplier and the direction of flow, i.e. ,

ε̇εε
p
= ∑

η

γ̇
ηNη (4.96)

κ̇κκ
p
= ∑

η

γ̇
ηNη

c (4.97)

In contrast to the multi-criterion model, a single plastic multiplier (yield function) is used to define
the viscoplastic response and is given as

γ̇
η = γ̇0

(〈∣∣τη −πη/`η
p
∣∣− rη

sc
〉

gη
sc

)msc

(4.98)

Fη
sc =

∣∣τη −π
η/`η

p
∣∣− rη

sc (4.99)

In the proposed yield function, the resolved couple-stress acts as a back stress-like quantity and
bears a striking resemblance to the slip system level micro-force balance law (which is interpreted
as a yield function) proposed by Gurtin [103]. In Gurtins model, the back stress quantity is de-
rived by using the principle of virtual power at the slip system level which considers the slip rates
and their gradients as independent kinematic degrees-of-freedom. Our yield function has been
motivated by considering single criterion J2-type extensions of micropolar plasticity [57, 58], the
previously discussed multi-criterion single crystal formulation, and Gurtins slip-gradient based ap-
proach. We intend to further pursue the connections between Gurtins theory and the single criterion
model presented herein in more detail in future work.

Assuming an associative structure to the plasticity equations, we then obtain the following
specific evolution equations for the plastic strain and torsion-curvature by taking the derivative of
the yield function in equation (4.99) with respect to force and couple-stress tensors, respectively:

Nη =
∂Fη

sc

∂σσσ
= Zηsgn(τη −π

η/`η
p ) (4.100)

Nη
c =

∂Fη
sc

∂m
=

1
`η

p
Hηsgn(τη −π

η/`η
p ) (4.101)

ε̇εε
p
= ∑

η

γ̇
ηZηsgn(τη −π

η/`η
p ) (4.102)

κ̇κκ
p
= ∑

η

γ̇η

`η
p

Hηsgn(τη −π
η/`η

p ) (4.103)
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The single criterion model is then completed by specifying the evolution equation for the threshold
stress ISV in analogous fashion to that presented for the multi-criterion model, i.e.

ṙη
sc = ∑

υ

(
A1qηυ

1 −Brη
sc
)
|γ̇υ |+ A2

`υ
p

qηυ

2 |γ̇
υ | (4.104)

The reduced dissipation inequality for the single criterion model is given as

∑
η

∣∣τη −π
η/`η

p
∣∣ γ̇η −∑

η

rη
scζ̇

η
sc ≥ 0. (4.105)

The methodology for determining the material constants (both elastic and plastic) for the micropo-
lar single crystal is still an open topic in the literature and there are differing vantage points on how
to best go about this [177]. The approach advocated by Forest et al. is that in the elastic regime the
response of the Cosserat polycrystal should not deviate too far from the classical elastic response.
This is interpreted as meaning that during purely elastic deformation, micro-rotations coincide
with continuum rotations and that couple-stresses remain negligibly small. To achieve this behav-
ior, the Cosserat couple modulus, µc, is set to a large value to penalize large differences between
the continuum and micro-rotations, while simultaneously choosing a small value for the additional
micropolar elastic constants, i = ,ג in the couple-stress/torsion-curvature relation, equation (4.78).

4.3.4 Non-Associative Model for Slip Transfer at Grain Boundaries

In our proposed treatment of GBs, in the spirit of core-mantle models, the polycrystal is divided
into at least two regions: grain interiors and GBs, while leaving open the possibility of defin-
ing a separate triple-junction region as well. This type of approach has also been used by many
researchers with several variations to explain scale-dependent yielding/strain-hardening as well as
trying to predict transitions in deformation modes in polycrystals as the grain size decreases and the
GB volume fraction increases (cf. [87, 88]). The motivation for the development of such compos-
ite models is two-fold and is driven by the following observations. GBs act as significant obstacles
to dislocations and obviously lead to the increase in initial yield strength with decreasing grain
size in conventional grain-sized polycrystals as described by the Hall-Petch effect. In addition to
enhancing the initial yield strength, GBs also play a critical role in determining strain-hardening
behavior as well. Increased slip multiplicity occurs in the GB regions as a result of intergranular
constraints on slip in light of lattice mismatch. As a result of this increased dislocation activity, in
addition to piled-up dislocations at the interface, it is believed that the GB regions strain-harden
at a much higher rate than grain interiors which are typically characterized by fewer active slip
systems.

4.3.4.1 Grain Interiors

Within the grain interiors, we assume that the response remains classical in the sense that Schmids
law holds, and that strain-hardening may be described in terms of a generalized Taylor relation,
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which may include dependence on both the GND and the statistically immobile dislocation (SID)
density. The term “statistically immobile” is preferred here over the more common usage of “sta-
tistically stored” because we find this term misleading. The distinct separation of dislocation den-
sity into geometrically necessary and statistically stored parts is unique (in the discrete case), and
requires the specification of an area or volume over which the quantities are to be calculated.
However, if we consider the separation of the total dislocation density into mobile and immobile
portions, there is no such unique separation in terms of GNDs and SSDs. Even if it is assumed
that GNDs only contribute to the immobile density, the SSD density will still have contributions
to both the mobile and immobile dislocation populations, and ultimately it is the immobile portion
of the SSD density that contributes to the slip resistance via the Taylor relation. In other words,
the SID density is a subset of the total SSD density. The buildup of SID density is described by
a Kocks-Mecking type of equation [128, 162] reflecting accumulation (due to statistical trapping)
and annihilation (due to dynamic recovery). A summary of the relevant equations is given by

rη = ιµb
√

ρ
η

tot , ρ
η

tot =
√

ρ
η

SID +ρ
η

GND (4.106)

ρ̇
η

SID = ∑
υ

hηυ

(
c1
√

ρυ
tot− c2ρ

υ
SID

)
|γ̇υ | , ρ

η

GND = |ϕη |/(b`η) (4.107)

Here, rη is an isotropic hardening variable, ι is a geometrical factor related to the dislocation
arrangement, µ is the shear modulus, b is the magnitude of the burgers vector, ρ

η

tot is the total
immobile dislocation density, ρ

η

SID is the immobile portion of the SSD density, ρ
η

GND is the GND
density, hηυ is a coupling coefficient between slip systems η and υ , and c1 and c2 are parameters
that are specified. These equations, unlike those introduced in the previous section, are the types
of relations we will employ as we move towards the use of more physically-based ISVs. The
kinematics remain such that the evolution of plastic strain is given by the sum of shearing rates
over all active slip systems, i.e. ,

ε̇εε
p
= ∑

η

γ̇
ηNη (4.108)

Depending on what type of formulation (single or multi-criterion) is chosen based on the find-
ings of the single crystal study of Section 4.3.3, the plastic-torsion curvature flow rule may be
determined in a number of ways and is left unspecified for the time being.

4.3.4.2 Grain Boundary Regions

Experimental observations have shown that the slip transmission process depends not only on the
resolved shear stress on the incoming glide plane, but also on the resolved shear stress on the
potential outgoing glide planes [138, 139, 140]. Accordingly, we propose a non-associative flow
rule for each GB slip system, which can be written in the general form

Fη ,υ
A→B :=

∣∣τη

A +aτ
η ,υ
B

∣∣− rη ,υ (4.109)

where τ
η

A is the resolved shear stress on plane η in grain A, a is a material parameter reflecting
the magnitude of the non-Schmid stress required for successful slip transfer, τ

η ,υ
B is the resolved

shear stress on the potential outgoing plane, υ , in grain B, and rη ,υ is resistance to slip transfer
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across the boundary. In general the transmission threshold stress depends on the orientation of
the incoming and outgoing slip systems, the orientation of the GB, and the relevant structural pa-
rameters of the GB (dislocations, facets, disclination structural units, nano-porosity, etc.). Ideally,
the threshold transmission threshold stress and its evolution should be determined from finer scale
simulations, such as molecular dynamics, discrete dislocation, or a multi-scaled method such as
CADD [61, 60]. However, there is a paucity of such results for general types of boundaries, and
yet it is still undecided as to the applicability of the existing results due to the high strain-rates, low
numbers of dislocations considered, and appropriate specification of boundary conditions. There-
fore, while we will establish a framework which will be capable of accepting results from these
types of simulations, explicit incorporation of such information is beyond the scope of the research.
Instead, we focus on qualitative aspects of boundary behavior through the specification of bound-
ary strength and its evolution by borrowing from the existing dislocation and misorientation-based
arguments while readily admitting that this is a first-order approximation. The increment of plas-
tic slip would still be given in power-law form as in the previous section, and the flow potential
defining the direction of plastic straining is the same as in the classical case. The normal to the
viscoplastic potential and to the yield surface are therefore given as

Nη = Zηsgn(τη

A ) ,
∂Fη ,υ

A→B
∂σσσ

=
(
Zη

A +aZυ
B
)

sgn(τη

A +aτ
η ,υ
B ) (4.110)

and the proposed model is clearly non-associative, Nη 6= ∂Fη ,υ
A→B

∂σσσ
. Again, as in the case for grain

interiors, the form of the plastic torsion-curvature flow rule will be selected based on the outcome
of the single crystal parametric study, and is left unspecified at present.

In addition to the proposed modifications of the flow rules, it may also be desirable to modify
the plastic kinematics in the GB region as well to account for the possibility of GB shearing and
torsion-curvature development independent of that induced by the glide of dislocations in active
slip planes. The incorporation of these deformation modes is achieved by a superposition of the
GB kinematics onto the slip system based kinematics given in previous discussions, i.e. ,

ε̇εε
p
= ∑

η

γ̇
ηZηsgn(τη)+∑

υ

γ̇
υ
GBZυ

GBsgn(τυ
GB) (4.111)

κ̇κκ
p
= ∑

η

ϕ̇η

`η

slip
Hη

slipsgn(τη)+∑
υ

ϕ̇υ

`υ
GB

Hυ
GBsgn(τυ

GB) , Hυ
GB = ςςς

υ ⊗ tυ (4.112)

where the summation is over the η slip systems and υ grain boundaries, and in the simple two-
dimensional conceptualization the orientation tensor, Hυ

GB, is the outer product of the unit grain-
boundary tangent vector, ςςςυ , and the transverse (out-of-plane) direction. The further development
of these concepts is left for future work.
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4.4 Numerical Implementation

4.4.1 Element Formulation

The following development concerns the implementation of a 2-D plane strain micropolar finite
element, in which the active degrees of freedom are the displacements in the x1 and x2 directions
in addition to the micro-rotation about the x3 axis: u1, u2, and φ3. Accordingly the non-zero
micropolar strain and torsion-curvature measures are ε11, ε22, ε12, ε21, κ13, and κ23, which for
convenience of notation can be represented compactly via the generalized micropolar strain vector{

E
}

as {
E
}

=
{

ε11 ε22 ε12 ε21 κ13 κ23
}T (4.113)

In the usual manner, the continuous displacement vector, {a}, for an element is approximated by
the nodal displacement vector, {ã}, through the use of the interpolation matrix, [N]:

{a}= [N]{ã}=
{

u1 u2 φ3
}T (4.114)

For a linear 4-noded quadrilateral element, the nodal displacement vector and interpolation matrix
then take the forms

{ã}=
{

u1
1 u1

2 φ 1
3 u2

1 u2
2 φ 2

3 u3
1 u3

2 φ 3
3 u4

1 u4
2 φ 4

3
}T (4.115)

[N] =

 N1 0 0 N2 0 0 N3 0 0 N4 0 0
0 N1 0 0 N2 0 0 N3 0 0 N4 0
0 0 N1 0 0 N2 0 0 N3 0 0 N4

 (4.116)

with the linear shape functions given as

N1 = 0.25(1− r)(1− s) , N2 = 0.25(1+ r)(1− s)
N3 = 0.25(1+ r)(1+ s) , N4 = 0.25(1− r)(1+ s) (4.117)

where r and s are the natural (isoparametric) coordinates of the element. Using equations (4.114)-
(4.117) with the strain-displacement relations given in Section 4.3.1.1 yields the relationship be-
tween the strain vector and the nodal displacement vector{

E
}

= [B]{ã} (4.118)

[B] =


N1,1 0 0 N2,1 0 0 N3,1 0 0 N4,1 0 0

0 N1,2 0 0 N2,2 0 0 N3,2 0 0 N4,2 0
0 N1,1 −N1 0 N2,1 −N2 0 N3,1 −N3 0 N4,1 −N4

N1,2 0 N1 N2,2 0 N2 N3,2 0 N3 N4,2 0 N4
0 0 N1,1 0 0 N2,1 0 0 N3,1 0 0 N4,1
0 0 N1,2 0 0 N2,2 0 0 N3,2 0 0 N4,2

 (4.119)

The strain-displacement matrix, [B], contains the pertinent values of the interpolation functions and
their derivatives. The individual components in equation (4.119) are derived using the Jacobian
matrix of the transformation between the global and isoparametric coordinates together with the
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derivatives of the interpolation functions with respect to the isoparametric coordinates as given in
any standard finite element text.

The next step is to obtain the finite element equations using the principle of virtual work given
which is rewritten below in matrix notation∫

S
{δa}T {T

}
dS =

∫
V

{
δE
}{

Σ
}

dV (4.120)

where
{

T
}

is the generalized traction vector and the generalized stress vector,
{

Σ
}

, follows the
appropriate convention based on that of the strain vector, i.e.{

T
}

=
{

T1 T2 M3
}T (4.121){

Σ
}

=
{

σ11 σ22 σ12 σ21 m13 m23
}T (4.122)

Finally, the finite element equations are obtained by discretizing and linearizing the principle of
virtual work, and pulling the arbitrary nodal variations out of the integrals such that∫

S
[N]T

{
∆T
}

dS =
∫

V
[B]T

{
∆Σ
}

dV =
∫

V
[B]T

[
Cep
]
[B]{∆ã}dV (4.123)

or
{∆ f}= [K]{∆ã} (4.124)

where the incremental stress-strain relations,
{

Σ̃

}
=
[
Cep
]{

Ẽ
}

, have been substituted in,
[
Cep
]

is the constitutive tangent matrix, and [K] is the finite element tangent stiffness matrix. The element
has been implemented via a user element subroutine (UEL) in the commercial finite element code
ABAQUS [1], as shown in the Appendix for this chapter.

4.4.2 Constitutive Update

The following section covers the algorithmic treatment for integrating the constitutive equations
presented in Section 4.3 for both the single and multi-criterion micropolar crystal plasticity mod-
els. Two such algorithms are presented: i) a rate-tangent modulus scheme which is an explicit
integration method and ii) an implicit return mapping method based on local Newton-Raphson
(N-R) iterations. To date, only the rate-tangent method [185] has been implemented numerically
within the UEL due to the simplicity of the algorithmic treatment and the uncertainty of what will
be chosen as the “final” form of the set of constitutive equations. However, upon the settling on a
particular set of constitutive equations it will be advantageous to use the return mapping method
for stability reasons and also to reduce the computational times by allowing for the use of larger
simulation time steps. Sections 4.4.2.1 and 4.4.2.2 lay out the process for calculating the slip and
torsion-curvature increments at the end of the time step for the rate-tangent and return mapping
schemes, respectively. The numerical implementation is completed by calculating the algorithmic
moduli which are required by the UEL to provide updated predictions for the displacement field
at the end of the time step. Derivations of the algorithmic moduli for the rate-tangent and return
mapping schemes are given in Sections 4.4.3.1 and 4.4.3.2, respectively.
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4.4.2.1 Rate-Tangent Modulus Scheme

In the rate-tangent method, all variables except for the plastic strain and torsion-curvature incre-
ments are integrated via forward Euler method, and the plastic increments are determined by solv-
ing a set of algebraic equations based on forward-gradient expansions of the flow rules.

Multi-Criterion Model
The incremental relations for the constitutive update based on the multi-criterion model are sum-
marized below in equations (4.125)-(4.128). The slip and torsion curvature increments, ∆γη and
∆ϕη , are determined by the solution of a set of algebraic equations based on quantities at time
step n and then these values are used to update the plastic strain, torsion-curvature, and ISVs at
time step n +1. In the following developments, all quantities without explicit subscripts are to be
interpreted as being given at time n+1.

εεε
p = εεε

p|n +∑
η

∆γ
ηZη (4.125)

κκκ
p = κκκ

p|n +∑
η

∆ϕη

`η
p

Hη (4.126)

rη = rη |n +∑
υ

(
A1qηυ

1 −Brη
n
)
|∆γ

υ |+A2qηυ

2 |∆ϕ
υ | (4.127)

rη
c = rη

c |n +∑
υ

A3qηυ

3 |∆ϕ
υ | (4.128)

The plastic strain and curvature increments are given by the generalized trapezoid rule, i.e. ,

∆γ
η = ∆t

[
(1−a) γ̇

η
n +aγ̇

η

n+1
]

(4.129)

∆ϕ
η = ∆t

[
(1−b) ϕ̇

η
n +bϕ̇

η

n+1
]

(4.130)

If a (resp. b) is equal to 1 this corresponds to fully implicit integration, whereas if a (resp. b) equal
to 0 this corresponds to explicit integration. The plastic shearing and torsion-curvature rates at the
end of the time step are approximated via forward-gradient expansion of the flow rules about the
state at time, tn, i.e. ,

γ̇
η

n+1 = γ̇
η
n +

∂ γ̇η

∂τη

∣∣∣∣
n

∆τ
η +

∂ γ̇η

∂ rη

∣∣∣∣
n

∆rη (4.131)

ϕ̇
η

n+1 = ϕ̇
η
n +

∂ ϕ̇η

∂πη

∣∣∣∣
n

∆π
η +

∂ ϕ̇η

∂ rη
c

∣∣∣∣
n

∆rη
c (4.132)

Listed below are the flow rules and other explicit expressions entering the expansions given in
equations (4.131) and (4.132):

γ̇
η = γ̇0

(
〈|τη |− rη〉

gη

)m

sgn(τη) (4.133)

∂ γ̇η

∂τη
=

mγ̇0

gη

(
〈|τη |− rη〉

gη

)m−1

=
mγ̇

|τη |− rη
sgn(τη) (4.134)
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∂ γ̇η

∂ rη
=−mγ̇0

gη

(
〈|τη |− rη〉

gη

)m−1

sgn(τη) =− mγ̇

|τη |− rη
sgn(τη) (4.135)

∆τ
η = Zη : ∆σσσ = Zη : C : ∆εεε−∑

υ

Zη : C : Zυ
∆γ

υ (4.136)

∆rη = ∑
υ

(
A1qηυ

1 −Brη
n
)
|∆γ

υ |+A2qηυ

2 |∆ϕ
υ | (4.137)

ϕ̇
η = ϕ̇0

(〈∣∣πη/`η
p
∣∣− rη

c
〉

gη
c

)mc

sgn(πη) (4.138)

∂ ϕ̇η

∂πη
=

mcϕ̇0

`η
p gη

c

(〈∣∣πη/`η
p
∣∣− rη

c
〉

gη
c

)mc−1

=
mcϕ̇

|πη |− `η
p rη

c
sgn(πη) (4.139)

∂ ϕ̇η

∂ rη
c

=−mcϕ̇0

gη
c

(〈∣∣πη/`η
p
∣∣− rη

c
〉

gη
c

)mc−1

sgn(πη) =− mcϕ̇∣∣πη/`η
p
∣∣− rη

c
(4.140)

∆π
η = Hη : ∆m = Hη : D : ∆κκκ−∑

υ

Hη : D : Hυ ∆ϕυ

`υ
p

(4.141)

∆rη
c = ∑

υ

A3qηυ

3 |∆ϕ
υ | (4.142)

Upon substitution of the above expressions into the generalized trapezoid rule for the plastic shear
and torsion-curvature increments we obtain the two equations

∆γ
η =γ̇

η
n ∆t +a∆t

[
∂ γ̇η

∂τη

∣∣∣∣
n

(
Zη : C : ∆εεε−∑

υ

Zη : C : Zυ
∆γ

υ

)
+

∂ γ̇η

∂ rη

∣∣∣∣
n

(
∑
υ

(
A1qηυ

1 −Brη
n
)
|∆γ

υ |+A2qηυ

2 |∆ϕ
υ |
)] (4.143)

∆ϕ
η =ϕ̇

η
n ∆t +b∆t

[
∂ ϕ̇η

∂πη

∣∣∣∣
n

(
Hη : D : ∆κκκ−∑

υ

Hη : D : Hυ ∆ϕυ

`υ
p

)

+
∂ ϕ̇η

∂ rη
c

∣∣∣∣
n
∑
υ

A3qηυ

3 |∆ϕ
υ |
] (4.144)

Gathering terms containing ∆γυ and ∆ϕυ on the LHS, the system of equations takes the form

∆γ
η +a∆t

∂ γ̇η

∂τη

∣∣∣∣
n
∑
υ

Zη : C : Zυ
∆γ

υ −a∆t
∂ γ̇η

∂ rη

∣∣∣∣
n

(
∑
υ

(
A1qηυ

1 −Brη
n
)
|∆γ

υ |+A2qηυ

2 |∆ϕ
υ |
)

= γ̇
η
n ∆t +a∆t

∂ γ̇η

∂τη

∣∣∣∣
n
(Zη : C : ∆εεε)

(4.145)

∆ϕ
η +b∆t

∂ ϕ̇η

∂πη

∣∣∣∣
n
∑
υ

Hη : D : Hυ ∆ϕυ

`η
p
−b∆t

∂ ϕ̇η

∂ rη
c

∣∣∣∣
n
∑
υ

A3qηυ

3 |∆ϕ
υ |

= ϕ̇
η
n ∆t +b∆t

∂ ϕ̇η

∂πη

∣∣∣∣
n
(Hη : D : ∆κκκ)

(4.146)
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which can be written in a more compact notation as in equations (4.147)-(4.148) where the follow-
ing equivalencies have been used, sgn(∆γη) = sgn(τη

n ) and sgn(∆ϕη) = sgn(πη
n ), i.e. ,

∑
υ

T ηυ

1 ∆γ
υ +∑

υ

T ηυ

2 ∆ϕ
υ = γ̇

η
n ∆t +a∆t

∂ γ̇η

∂τη

∣∣∣∣
n
(Zη : C : ∆εεε) (4.147)

∑
υ

T ηυ

3 ∆ϕ
υ = ϕ̇

η
n ∆t +b∆t

∂ ϕ̇η

∂πη

∣∣∣∣
n
(Hη : D : ∆κκκ) (4.148)

T ηυ

1 = δ
ηυ +a∆t

(
∂ γ̇η

∂τη

∣∣∣∣
n
(Zη : C : Zυ)− ∂ γ̇η

∂ rη

∣∣∣∣
n

(
A1qηυ

1 −Brη
n
)

sgn(τυ
n )
)

(4.149)

T ηυ

2 =−a∆t
∂ γ̇η

∂ rη

∣∣∣∣
n

A2qηυ

2 sgn(πυ
n ) (4.150)

T ηυ

3 = δ
ηυ +

b∆t
`υ

p

(
∂ ϕ̇η

∂πη

∣∣∣∣
n
(Hη : D : Hυ)− `υ

p
∂ ϕ̇η

∂ rη
c

∣∣∣∣
n

A3qηυ

3 sgn(πυ
n )
)

(4.151)

The above represents a system of matrix equations (4.147)-(4.148) which can be solved for
the increments of plastic shear and torsion-curvature. Since the threshold couple-stress evolu-
tion equation does not depend on the rate of plastic shear on the associated slip system, the two
matrix equations are not fully coupled. In other words, we can first solve for the increment of
plastic torsion-curvature and immediately insert the result into the matrix equation for the plastic
shear increment. If this were not the case, the system of matrix equations above would be fully
coupled and would result in a slightly more involved solution procedure for the plastic slip and
torsion-curvature increments. As it stands, equation (4.148) can be directly inverted to solve for
the plastic curvature increments as shown in equation (4.152). The result is then directly inserted
into equation (4.147) giving the plastic shear increments in equation (4.153):

∆ϕ
η = ∑

υ

(
T ηυ

3
)−1
(

ϕ̇
υ
n ∆t +b∆t

∂ ϕ̇υ

∂πυ

∣∣∣∣
n
(Hυ : D : ∆κκκ)

)
(4.152)

∆γ
η = ∑

υ

(
T ηυ

1
)−1
(

γ̇
υ
n ∆t +a∆t

∂ γ̇υ

∂τυ

∣∣∣∣
n
(Zυ : C : ∆εεε)

)
−∑

υ

∑
χ

(
T ηυ

1
)−1 T υχ

2 ∆ϕ
χ (4.153)

Single Criterion Model
An analogous procedure is performed for the single criterion model by noting that we must only
calculate the plastic slip increment. In this case, the governing incremental relations are given by

εεε
p = εεε

p|n +∑
η

∆γ
ηZη (4.154)

κκκ
p = κκκ

p|n +∑
η

∆γη

`η
p

Hη (4.155)

rη
sc = rη

sc|n +∑
υ

(
A1qηυ

1 −Brη
sc
)
|∆γ

υ |+A2qηυ

2 |∆ϕ
υ | (4.156)
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As before the plastic slip increment is given by the generalized trapezoid rule, i.e.

∆γ
η = ∆t

[
(1−a) γ̇

η
n +aγ̇

η

n+1
]

(4.157)

and the forward-gradient approximation of the flow rule for the single criterion model has the form

γ̇
η

n+1 = γ̇
η
n +

∂ γ̇η

∂τη

∣∣∣∣
n

∆τ
η +

∂ γ̇η

∂πη

∣∣∣∣
n

∆π
η +

∂ γ̇η

∂ rη
sc

∣∣∣∣
n

∆rη
sc (4.158)

The expressions in the forward-gradient expression are then given as

γ̇
η = γ̇0

(〈∣∣τη −πη/`η
p
∣∣− rη

sc
〉

gη
sc

)msc

(4.159)

∂ γ̇η

∂τη
=

mscγ̇0

gη
sc

(〈∣∣τη −πη/`η
p
∣∣− rη

sc
〉

gη
sc

)msc−1

=
mscγ̇∣∣τη −πη/`η

p
∣∣− rη

sc
sgn(τη −π

η/`η
p ) (4.160)

∂ γ̇η

∂πη
=−mscγ̇0

`η
p gη

sc

(〈∣∣τη −πη/`η
p
∣∣− rη

sc
〉

gη
sc

)msc−1

=− mscγ̇

`η
p
(∣∣τη −πη/`η

p
∣∣− rη

sc
)sgn(τη −π

η/`η
p )

(4.161)

∂ γ̇η

∂ rη
sc

=−mscγ̇0

gη
sc

(〈∣∣τη −πη/`η
p
∣∣− rη

sc
〉

gη
sc

)m−1

=− mscγ̇∣∣τη −πη/`η
p
∣∣− rη

sc
(4.162)

∆τ
η = Zη : ∆σσσ = Zη : C : ∆εεε−∑

υ

Zη : C : Zυ
∆γ

υ (4.163)

∆π
η = Hη : ∆m = Hη : D : ∆κκκ−∑

υ

Hη : D : Hυ ∆γυ

`υ
p

(4.164)

∆rη
sc = ∑

υ

(
A1qηυ

1 −Brη
sc
)
|∆γ

υ |+ A2

`υ
p

qηυ

2 |∆γ
υ | (4.165)

Substitution of equations (4.160)-(4.165) into equation (4.157) then leads to

∆γ
η = γ̇

η
n ∆t +a∆t

[
∂ γ̇η

∂τη

∣∣∣∣
n

(
Zη : C : ∆εεε−∑

υ

Zη : C : Zυ
∆γ

υ

)
+

∂ γ̇η

∂πη

∣∣∣∣
n

(
Hη : D : ∆κκκ−∑

υ

Hη : D : Hυ ∆γυ

`υ
p

)

+
∂ γ̇η

∂ rη
sc

∣∣∣∣
n

(
∑
υ

(
A1qηυ

1 −Brη
sc
)
|∆γ

υ |+ A2

`υ
p

qηυ

2 |∆γ
υ |
)]

,

(4.166)

which upon rearrangement of terms containing ∆γυ to the LHS leads to the matrix equation to be
solved for the plastic slip increments

∑
υ

T ηυ
∆γ

υ = γ̇
η
n ∆t +a∆t

(
∂ γ̇η

∂τη

∣∣∣∣
n
(Zη : C : ∆εεε)+

∂ γ̇η

∂πη

∣∣∣∣
n
(Hη : D : ∆κκκ)

)
(4.167)
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T ηυ =δ
ηυ +a∆t

[
∂ γ̇η

∂τη

∣∣∣∣
n
(Zη : C : Zυ)+

1
`υ

p

∂ γ̇η

∂πη

∣∣∣∣
n
(Hη : D : Hυ)

− ∂ γ̇η

∂ rη
sc

∣∣∣∣
n

(
A1qηυ

1 −Brη
sc +

A2

`υ
p

qηυ

2

)
sgn(τυ

n −π
υ
n /`υ

p)

] (4.168)

where the solution is expressed as

∆γ
η = ∑

υ

(T ηυ)−1
[

γ̇
υ
n ∆t +a∆t

(
∂ γ̇υ

∂τυ

∣∣∣∣
n
(Zυ : C : ∆εεε)+

∂ γ̇υ

∂πυ

∣∣∣∣
n
(Hυ : D : ∆κκκ)

)]
. (4.169)

4.4.2.2 Return Mapping Scheme

The return mapping integration algorithms are based on the concept of satisfying the consistency
(or in the case of rate-dependent models, quasi-consistency) conditions at time step tn+1. The two
main components of the method are an integration scheme which transforms the constitutive equa-
tions into a system on nonlinear algebraic equations, and a solution scheme for the set of nonlinear
algebraic equations. The presentation below follows that given in Miehe and Schroder [166], and
is based on a fully implicit backward Euler method.

Multi-Criterion Model
The algorithmic constitutive equations are the same as given in equations (4.125)-(4.128) and are
omitted here for brevity. We now introduce the notion of trial elastic strains and torsion-curvatures,
εεε

e∗ and κκκ
e∗ , in equations (4.170) and (4.171) which are fixed for a given increment of deformation.

εεε
e = εεε

e∗−∑
η

∆γ
ηZη , εεε

e∗ = εεε− εεε
p|n (4.170)

κκκ
e = κκκ

e∗−∑
η

∆ϕη

`η
p

Hη , κκκ
e∗ = κκκ− κκκ

p|n (4.171)

σσσ = σσσ
∗−∑

η

C : Zη
∆γ

η , σσσ
∗ = C : εεε

e∗ (4.172)

m = m∗−∑
η

D : Hη ∆ϕη

`η
p

, m∗ = D : κκκ
e∗ (4.173)

These trial elastic strains and torsion-curvatures are used to calculate trial force and couple-stresses
in equations (4.172) and (4.173) (and their slip and/or torsion-curvature resolved counterparts)
which are then used to evaluate whether or not each slip and torsion-curvature system is activated
for the given increment of deformation. This evaluation is performed by checking the yield condi-
tions which are given below for slip and torsion-curvature:

Fη∗ :=
∣∣∣τη∗

∣∣∣− rη |n (4.174)

Fη∗
c :=

∣∣∣∣∣πη∗

`η
p

∣∣∣∣∣− rη
c |n (4.175)
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If Fη∗ , Fη∗
c < 0, then the slip and/or torsion-curvature system is inactive, and if all slip and torsion-

curvature systems are inactive then the trial elastic strain and torsion-curvature is taken to be the
elastic strain and torsion-curvature at step tn+1, and the constitutive update proceeds to the next
time step. If, however, some of the yield conditions are violated, Fη∗ , Fη∗

c > 0, we seek to find
the slip and torsion-curvature increments that satisfy the quasi-consistency conditions at step n+1.
The quasi-consistency conditions are obtained by inverting the flow rules, i.e. ,

Rη := |τη |−

(
rη +gη

(
|∆γ̇η |
γ̇0∆t

) 1
m
)

= 0 (4.176)

Rη
c :=

∣∣∣∣πη

`η
p

∣∣∣∣−
(

rη
c +gη

c

(
|∆ϕ̇η |
ϕ̇0∆t

) 1
mc

)
= 0 (4.177)

Since the initial guesses for the slip and torsion-curvature increments will not satisfy the above
conditions, an iterative solution process is required. This is achieved by performing Taylor series
expansions of Rη and Rη

c about the end of the time increment and setting them equal to zero, i.e. ,

Rη(εεεe∗,∆γ
υ i+1

,∆ϕ
υ i+1

) = Rη i
+∑

υ

∂Rη

∂∆γυ

∣∣∣∣i δ (∆γ
υ)+∑

υ

∂Rη

∂∆ϕυ

∣∣∣∣i δ (∆ϕ
υ) = 0 (4.178)

Rη
c (κκκe∗,∆γ

υ i+1
,∆ϕ

υ i+1
) = Rη i

c +∑
υ

∂Rη
c

∂∆γυ

∣∣∣∣i δ (∆γ
υ)+∑

υ

∂Rη
c

∂∆ϕυ

∣∣∣∣i δ (∆ϕ
υ) = 0 (4.179)

δ (∆γ
υ) = ∆γ

υ i+1
−∆γ

υ i
, δ (∆ϕ

υ) = ∆ϕ
υ i+1
−∆ϕ

υ i
(4.180)

The notation used in equations (4.178)-(4.180) is such that the raised integer superscripts refer to
the Newton-Raphson iteration number, and δ (∆γυ) and δ (∆ϕυ) represent the corrections to the
slip and torsion-curvature increments. The iterative solution process is repeated until acceptable
solutions are found for ∆γυ and ∆ϕυ , such that δ (∆γυ),δ (∆ϕυ)→ 0. The system of equations to
be solved can be compactly expressed in matrix notation as[

∂R
∂∆γ

]
{δ (∆γ)}+

[
∂R

∂∆ϕ

]
{δ (∆ϕ)}=−{R} (4.181)

[
∂Rc

∂∆γ

]
{δ (∆γ)}+

[
∂Rc

∂∆ϕ

]
{δ (∆ϕ)}=−{Rc} (4.182)

where the derivatives necessary for the N-R procedure are givenas

∂Rη

∂∆γυ
=−Zη : C : Zυsgn(τη)−

[(
A1qηυ

1 −Brη
n
)

sgn(∆γ
υ)+

gυ

mγ̇0∆t

(
|∆γυ |
γ̇0∆t

)1/(m−1)

sgn(∆γ
υ)

]
(4.183)

∂Rη

∂∆ϕυ
=−A2qηυ

2 sgn(ϕ̇υ) (4.184)

∂Rη
c

∂∆γυ
= 0 (4.185)
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∂Rη
c

∂∆ϕυ
=− 1

`υ
p

Hη : D : Hυsgn(πη)−

[
A3qηυ

3 sgn(∆ϕ
υ)+

gυ
c

mcϕ̇0∆t

(
|∆ϕυ |
ϕ̇0∆t

)1/(mc−1)

sgn(∆ϕ
υ)

]
(4.186)

Single Criterion Model
The return mapping procedure for the single criterion model is analogous to the multi-criterion
model, and the governing equations are summarized below. The algorithmic treatment of the con-
stitutive equations has previously been given in equations (4.154)-(4.156) for this model. The trial
yield and quasi-consistency conditions are

Fη∗
sc :=

∣∣∣∣∣τη∗− πη∗

`η
p

∣∣∣∣∣− rη
sc|n (4.187)

Rη
sc :=

∣∣∣∣∣τη∗− πη∗

`η
p

∣∣∣∣∣−
(

rη
sc +gη

sc

(
|∆γ̇η |
γ̇0∆t

) 1
msc

)
= 0 (4.188)

and the Taylor series expansion is given as

Rη
sc(εεε

e∗,κκκe∗,∆γ
υ i+1

) = Rη
sc|

i +∑
υ

∂Rη
sc

∂∆γυ

∣∣∣∣i δ (∆γ
υ) = 0 (4.189)

where the iterative slip increment corrections are determined by the matrix equation

{δ (∆γ)}=−
[

∂Rsc

∂∆γ

]−1

{Rsc} (4.190)

The derivative of the quasi-consistency conditions with respect to the slip increment needed to
calculate the iterative corrections given by

∂Rη
sc

∂∆γυ
=−Zη : C : Zυsgn(τη)+

1
`η

p `υ
p

Hη : D : Hυsgn(τη − πη

`η
p

)

−

[(
A1qηυ

1 −B rη
sc|n +

A2

`υ
p

qηυ

2

)
sgn(∆γ

υ)+
gυ

sc
mscγ̇0∆t

(
|∆γυ |
γ̇0∆t

)1/(msc−1)

sgn(∆γ
υ)

]
(4.191)

4.4.3 Algorithmic Moduli

Crucial to the stability of the constitutive update algorithm is the derivation of the appropriate al-
gorithmic elastoplastic moduli which is consistent with the integration scheme. Due to the abrupt
transition in material behavior at the yield point, using the continuum elastoplastic tangent modulus
can cause spurious numerical solutions during loading/unloading. The development of the algo-
rithmic moduli for the rate-tangent and return mapping schemes are covered in Sections 4.4.3.1
and 4.4.3.2, respectively, for both multi- and single criterion models.
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4.4.3.1 Rate-Tangent Modulus Scheme

Multi-Criterion Model

The algorithmic elastoplastic modulus for the rate-tangent scheme is calculated in a rather
straight-forward manner by substituting the solutions for the slip and torsion-curvature increments
given in equations (4.152) and (4.153) into the incremental force and couple-stress equations, and
is derived as

∆σσσ = C : ∆εεε−∑η C : Zη∆γη

= C : ∆εεε−∆t ∑η ∑υ C : Zη
(
T ηυ

1
)−1

γ̇υ
n

−a∆t ∑η ∑υ C : Zη
(
T ηυ

1
)−1 ∂ γ̇υ

∂τυ

∣∣∣
n

Zυ : C : ∆εεε

+∆t ∑η ∑υ ∑χ ∑λ C : Zη
(
T ηυ

1
)−1 T υχ

2

(
T χλ

3

)−1
ϕ̇λ

n

+b∆t ∑η ∑υ ∑χ ∑λ C : Zη
(
T ηυ

1
)−1 T υχ

2

(
T χλ

3

)−1
∂ ϕ̇λ

∂πλ

∣∣∣
n

Hλ : D : κκκ

(4.192)

Rewriting in the following more compact notation for the force-stress increment we have

∆σσσ = Cep : ∆εεε +Bep : ∆κκκ +y (4.193)

Cep = C−a∆t ∑
η

∑
υ

C : Zη
(
T ηυ

1
)−1 ∂ γ̇υ

∂τυ

∣∣∣∣
n

Zυ : C (4.194)

Bep = b∆t ∑
η

∑
υ

∑
χ

∑
λ

C : Zη
(
T ηυ

1
)−1 T υχ

2

(
T χλ

3

)−1 ∂ ϕ̇λ

∂πλ

∣∣∣∣∣
n

Hλ : D (4.195)

y =−∆t ∑
η

∑
υ

C : Zη
(
T ηυ

1
)−1

γ̇
υ
n +∆t ∑

η

∑
υ

∑
χ

∑
λ

C : Zη
(
T ηυ

1
)−1 T υχ

2

(
T χλ

3

)−1
ϕ̇

λ
n (4.196)

The analogous expressions for the incremental couple-stress equation are given as

∆m = D : ∆κκκ−∑η D : Hη ∆ϕη

`
η
p

= D : ∆εεε−∆t ∑η ∑υ
1
`

η
p
D : Hη

(
T ηυ

3
)−1

ϕ̇υ
n

−b∆t ∑η ∑υ
1
`

η
p
D : Hη

(
T ηυ

3
)−1 ∂ ϕ̇υ

∂πυ

∣∣∣
n

Hυ : D : κκκ

(4.197)

∆m = Dep : ∆κκκ + z (4.198)

Dep = D−b∆t ∑
η

∑
υ

1
`η

p
D : Hη

(
T ηυ

3
)−1 ∂ ϕ̇υ

∂πυ

∣∣∣∣
n

Hυ : D (4.199)

z =−∆t ∑
η

∑
υ

1
`η

p
D : Hη

(
T ηυ

3
)−1

ϕ̇
υ
n (4.200)
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Single Criterion Model

Following the same procedure for the single criterion case leads to the following incremental
force stress expression in terms of increments of strain and torsion-curvature:

∆σσσ = C : ∆εεε−∑η C : Zη∆γη

= C : ∆εεε−∆t ∑η ∑υ C : Zη
(
T ηυ

1
)−1

γ̇υ
n

−a∆t ∑η ∑υ C : Zη
(
T ηυ

1
)−1
(

∂ γ̇υ

∂τυ

∣∣∣
n

Zυ : C : ∆εεε + ∂ γ̇υ

∂πυ

∣∣∣
n

Hυ : D : ∆κκκ

) (4.201)

where the tangent elastoplastic moduli are determined as

∆σσσ = Cep : ∆εεε +Bep : ∆κκκ +y (4.202)

Cep = C−a∆t ∑
η

∑
υ

C : Zη
(
T ηυ

1
)−1 ∂ γ̇υ

∂τυ

∣∣∣∣
n

Zυ : C (4.203)

Bep =−a∆t ∑
η

∑
υ

C : Zη (T ηυ)−1 ∂ γ̇υ

∂πυ

∣∣∣∣
n

Hυ : D (4.204)

y =−∆t ∑
η

∑
υ

C : Zη (T ηυ)−1
γ̇

υ
n (4.205)

Similarly the incremental couple-stress relation is given by

∆m = D : ∆κκκ−∑η D : Hη ∆γη

`
η
p

= D : ∆εεε−∆t ∑η ∑υ
1
`

η
p
D : Hη (T ηυ)−1

γ̇υ
n

−a∆t ∑η ∑υ
1
`

η
p
D : Hη (T ηυ)−1

(
∂ γ̇υ

∂τυ

∣∣∣
n

Zυ : C : εεε + ∂ γ̇υ

∂πυ

∣∣∣
n

Hυ : D : κκκ

) (4.206)

with the elastoplastic tangent moduli having the forms

∆m = Dep : ∆κκκ +Aep : ∆εεε + z (4.207)

Dep = D−a∆t ∑
η

∑
υ

1
`η

p
D : Hη (T ηυ)−1 ∂ γ̇υ

∂πυ

∣∣∣∣
n

Hυ : D (4.208)

Aep =−a∆t ∑
η

∑
υ

1
`η

p
D : Hη (T ηυ)−1 ∂ γ̇υ

∂τυ

∣∣∣∣
n

Zυ : C (4.209)

z =−∆t ∑
η

∑
υ

1
`η

p
D : Hη (T ηυ)−1

γ̇
υ
n (4.210)

In the case of the single criterion model, the fact that the plastic strain and torsion-curvature are
coupled through the use of a single viscoplastic multiplier, γ̇η , leads to a non-zero elastoplastic
moduli, Aep, which is not the case for the multi-criterion model in which it is found that Aep = 0.
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4.4.3.2 Return Mapping Scheme

The algorithmic elastoplastic tangent moduli appropriate for the return mapping scheme are deter-
mined in a slightly longer series of manipulations than in the rate tangent case. The first step in
the process is to take the derivatives of the force and couple-stress tensors with respect to the strain
and torsion-curvature, which leads to a set of four expressions for the tangent moduli, which to be
completed require the determination of the derivatives of the plastic slip and torsion-curvature in-
crements with respect to elastic trial strains and torsion-curvatures. It is shown below following the
methodology outlined in Miehe and Schroder [166] that these expressions are obtained by taking
appropriate derivatives of the quasi-consistency conditions and then solving a system of algebraic
matrix equations.

Multi-Criterion Model
For the multi-criterion model, the general expressions for the tangent elastoplastic moduli are given
by

Cep =
∂σσσ

∂εεε
=

∂σσσ

∂εεε
e∗ = C−∑

η

C : Zη ⊗ ∂∆γη

∂εεε
e∗ (4.211)

Bep =
∂σσσ

∂κκκ
e∗ =−∑

η

C : Zη ⊗ ∂∆γη

∂κκκ
e∗ (4.212)

Aep =
∂m
∂εεε

e∗ =−∑
η

1
`η

p
D : Hη ⊗ ∂∆ϕη

∂εεε
e∗ (4.213)

Dep =
∂m
∂κκκ

=
∂m

∂κκκ
e∗ = D−∑

η

1
`η

p
D : Hη ⊗ ∂∆ϕη

∂κκκ
e∗ (4.214)

To determine the derivatives of the plastic slip and torsion-curvature increments with respect to
the elastic trial strains, we take derivatives of the quasi-consistency conditions with respect to
the elastic trial strains which leads to the system of matrix equations (4.215) and (4.218) for the
primary unknowns:

∂Rη

∂εεε
e∗ = 0⇒ Zη : C sgn(τη) = ∑

υ

T ηυ

1
∂∆γυ

∂εεε
e∗ +∑

υ

T ηυ

2
∂∆ϕυ

∂εεε
e∗ (4.215)

T ηυ

1 = Zη : C : Zυ sgn(τη)+
(
A1qηυ

1 −Brη
n
)

sgn(∆γ
υ)+

gηδ ηυ

mγ̇0∆t

(
|∆γη |
γ̇0∆t

)1/(m−1)

sgn(∆γ
η)

(4.216)
T ηυ

2 = A2qηυ

2 sgn(∆ϕ
υ) (4.217)

∂Rη
c

∂εεε
e∗ = 0 = ∑

υ

Sηυ

1
∂∆γυ

∂εεε
e∗ +∑

υ

Sηυ

2
∂∆ϕυ

∂εεε
e∗ (4.218)

Sηυ

1 =− ∂ rη
c

∂∆γυ
= 0 (4.219)
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Sηυ

2 =−

(
1
`υ

p
Hη : D : Hυ sgn(πη)+A3qηυ

3 sgn(∆ϕ
υ)+

gη
c δ ηυ

mcϕ̇0∆t

(
|∆ϕη |
ϕ̇0∆t

)1/(mc−1)

sgn(∆ϕ
η)

)
(4.220)

Taking advantage of the fact Sηυ

1 = 0 for this particular set of ISV evolution equations, it is apparent
that

∂∆ϕυ

∂εεε
e∗ = 0 (4.221)

which leads to the results
∂∆γη

∂εεε
e∗ = ∑

υ

(
T ηυ

1
)−1 Zυ : C sgn(τυ) (4.222)

Aep = 0 (4.223)

Similarly, we set out to obtain expressions for the derivatives of the plastic slip and torsion-
curvature increments with respect to the trial elastic torsion-curvatures by taking the derivatives
of the quasi-consistency conditions with respect to the elastic trial torsion-curvatures leading to
two matrix equations:

∂Rη

∂κκκ
e∗ = 0 =−∑

υ

T ηυ

1
∂∆γυ

∂κκκ
e∗ −∑

υ

T ηυ

2
∂∆ϕυ

∂κκκ
e∗ (4.224)

∂Rη
c

∂κκκ
e∗ = 0⇒Hη : D sgn(πη) =−∑

υ

Sηυ

1
∂∆γυ

∂κκκ
e∗ −∑

υ

Sηυ

2
∂∆ϕυ

∂κκκ
e∗ (4.225)

The terms can then be solved as follows:

∂∆ϕυ

∂κκκ
e∗ =−∑

υ

(
Sηυ

2
)−1 Hυ : D sgn(πυ) (4.226)

which leads to the following results:

∂∆γη

∂κκκ
e∗ =−∑

υ

∑
δ

(
T ηυ

1
)−1 T υδ

2
∂∆ϕδ

∂κκκ
e∗ (4.227)

Single Criterion Model
The expressions for the elastoplastic tangent moduli for the single criterion model are given by

Cep =
∂σσσ

∂εεε
=

∂σσσ

∂εεε
e∗ = C−∑

η

C : Zη ⊗ ∂∆γη

∂εεε
e∗ (4.228)

Bep =
∂σσσ

∂κκκ
e∗ =−∑

η

C : Zη ⊗ ∂∆γη

∂κκκ
e∗ (4.229)

Aep =
∂m
∂εεε

e∗ =−∑
η

1
`η

p
D : Hη ⊗ ∂∆γη

∂εεε
e∗ (4.230)

Dep =
∂m
∂κκκ

=
∂m

∂κκκ
e∗ = D−∑

η

1
`η

p
D : Hη ⊗ ∂∆γη

∂κκκ
e∗ (4.231)
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The derivatives of the quasi-consistency condition with respect to the trial elastic strains and
torsion-curvatures in equations (4.232) and (4.235) lead to the solutions for the derivatives of the
plastic slip and torsion-curvature increments with respect to the trial quantities given in equa-
tions (4.234) and (4.236) in terms of the matrix Aηυ in equation (4.233):

∂Rη
sc

∂εεε
e∗ = 0⇒ Zη : C sgn(τη −π

η/`η
p ) = ∑

υ

Aηυ ∂∆γυ

∂εεε
e∗ (4.232)

Aηυ =

(
Zη : C : Zυ − 1

`υ
p

Hη : D : Hυ

)
sgn(τη −π

η/`η
p )

+

(
A1qηυ

1 −Brη
n +

A2qηυ

2
`υ

p

)
sgn(∆γ

υ)+
gη

scδ ηυ

mscγ̇0∆t

(
|∆γη |
γ̇0∆t

)1/(msc−1)

sgn(∆γ
η)

(4.233)

∂∆γη

∂εεε
e∗ = ∑

υ

(Aηυ)−1 Zυ : C sgn(τη −π
η/`η

p ) (4.234)

∂Rη
sc

∂κκκ
e∗ = 0⇒Hη : D sgn(τη −π

η/`η
p ) =−∑

υ

Aηυ ∂∆γυ

∂κκκ
e∗ (4.235)

∂∆γη

∂κκκ
e∗ =−∑

υ

(Aηυ)−1 Hυ : D sgn(τη −π
η/`η

p ) (4.236)

Again, as is expected, it is seen that the cross-coupling elastoplastic tangent moduli, Aep, is non-
zero for the single criterion model.

4.5 Simulations

In this section, a series of preliminary simulations are performed to demonstrate the basic function-
ality of the micropolar element and constitutive model. Three sets of simulations are performed:

1. A bar with a defect loaded in uniaxial compression

2. A notched plate loaded in uniaxial tension

3. A semi-infinite bicrystal loaded in simple shear.

All of the simulations to date have been performed using the multi-criterion model given in Sec-
tions 4.4.2.1 and 4.4.3.1. Simulation set 1 is used to demonstrate the mesh-regularizing capability
of the micropolar model as compared to the classical case for a strain-softening material, which
displays mesh sensitivity of the load-deflection curve as the mesh is refined. The notched plate
simulations are undertaken to investigate the ability of the micropolar model to regularize and/or
confine the plastic strain localization zone emanating from the notch. Single crystals oriented for
both single and double slip have been examined. For the micropolar model, we have also inves-
tigated the extreme ends of the spectrum for the couple modulus by looking at two values of the
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coupling parameter, N, to see how this affects the results. For N = 0, the micro-rotations are “free”
and with N = 0.95, the micro-rotations are constrained to move with the continuum rotations in the
elastic regime. The final set of simulations are performed in an attempt to qualitatively compare
results with other generalized crystal plasticity theories, as the semi-infinite bicrystal loaded in
simple shear is a commonly studied problem by developers of higher-order plasticity theories. All
of the simulations have been performed using the 2D implementation and the planar double slip
idealization shown in Figure 4.2.

Figure 4.2. Planar double slip geometry. φ = 35.1◦

4.5.1 Simulation Set 1: Bar With Defect

The dimensions of the plate are 120 mm x 60 mm, and four different mesh densities are examined:
16x8, 20x10, 24x12, and 40x20, respectively, and the model geometry and boundary conditions
for the 20x10 mesh are shown in Figure 4.3. The left end of the plate is constrained against
displacement in the x1-direction, with the node in the upper left hand corner being also constrained
against translation in the x2-direction to prevent rigid body motion. The compressive load is applied
via uniform displacement on the right end of the plate in the negative x1-direction. No constraints
are placed on the micro-rotation vector, and the material parameters used in the simulation are
given in Table 4.1. The material simulated is fictitious as these parameters do not correspond to
any particular real material. The “defective” element is introduced in the upper left hand corner by
assigning that element a yield strength a 10% lower than that of the other elements to trigger the
localization event. Load-deflection curves are plotted in Figure 4.4 where the total load is given as
the sum of all the nodal reaction forces at the right end of the plate. The results clearly show that
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Figure 4.3. Single crystal with defect loaded in compression (de-
fect is in upper left-hand corner).

Table 4.1. Simulation Set 1 Material Parameters.
E 11,920 MPa ν 0.49
N 0.95 `e 1 mm
γ̇0 0.001 s−1 r0 25 MPa
A1 -25 MPa q1 1
B 0 A2 0
q2 - g0 25 MPa
m 60 ϕ̇0 0.001 s−1

rc0 10 MPa-mm A3 0
q3 - gc0 10 MPa-mm
mc 30 `η

p 1 mm

for the classical crystal plasticity model, as the mesh is refined, different load-deflection curves are
obtained and the predicted load at the fixed end displacement of 8 mm decreases with each level of
refinement. In contrast, due to the presence of the length scale in the constitutive formulation, the
micropolar crystal plasticity model demonstrates a consistency of results with respect to the mesh
refinement. These results are qualitatively consistent with previously reported results concerning
J2-type extensions of micropolar plasticity [57, 58] and couple stress elastoplasticity [192].

4.5.2 Simulation Set 2: Notched Plate

The dimensions of the notched plate are 1 mm x 1 mm with a notch radius of 0.25 mm. Symmetry
boundary conditions are applied on the bottom and left faces of the plate while the load is applied
on the top face in terms of a uniform tensile displacement in the x2-direction of 0.03 mm. The
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Figure 4.4. Load-deflection curves for single crystal with defect
loaded in compression.

mesh consists of 880 elements and is shown along with the boundary conditions in Figure 4.5. The
orientation of the slip systems for the single and double slip configurations is shown in Figure 4.6.
Material parameters for this simulation set is shown in Table 4.2. As before, the material simulated
is fictitious as these parameters do not correspond to any specific real material. In the single slip
configuration, one of the slip systems is aligned such that one of the slip directions is perpendic-
ular to the loading axis, while in the double slip configuration the slip systems are aligned such
that the bisector axis between the two slip directions is aligned parallel to the loading direction.
The load-deflection curves for each simulation are shown in Figure 4.7. In the double slip config-
uration, there is not much difference between the two micropolar and classical cases in terms of
load-deflection response, however, in the more constrained single slip case, we see that the microp-
olar model gives a stiffer response which increases with the increasing value of N. Figures 4.8-4.11
show the magnitude of the micro-rotation and the skew symmetric parts of total, elastic, and plastic
micropolar strain tensors, respectively. The skew part of the total strain tensor gives the differ-
ence between the continuum and micro-rotation; the skew part of the elastic strain tensor gives the
difference between the elastic continuum spin (defined by the skew part of the elastic distortion)
and the micro-rotation; and the skew part of the plastic micropolar strain gives the plastic contin-
uum rotation defined by the skew part of the plastic distortion. Inspection of these plots reveals
a few qualitative observations, namely that in the case of unconstrained micro-rotations (N = 0),
no gradients in the micro-rotation field develop. It is also apparent that for the cases of N = 0.95
that the skew part of the total and plastic micropolar strains are nearly identical, whereas for the
unconstrained cases that is not observed. Also worth mentioning is the fact that the skew part of
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Figure 4.5. Finite element mesh density for the notched single
crystal simulations.

(a) (b)

Figure 4.6. Notched single crystal oriented for (a) single slip and
(b) symmetric double slip.
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Table 4.2. Simulation Set 2 Material Parameters.
E 100,000 MPa ν 0.3
N 0.95 `e 0.01 mm
γ̇0 0.001 s−1 r0 100 MPa
A1 30 MPa q1 1
B 0 A2 0
q2 - g0 300 MPa
m 60 ϕ̇0 0.001 s−1

rc0 5 MPa-mm A3 0
q3 - gc0 10 MPa-mm
mc 2 `η

p 1 mm

the plastic strains display qualitatively similar contours for both N = 0 and N = 0.95 as shown in
Figure 4.10, while for the case N = 0, the skew parts of the total and elastic micropolar strains
bear some similarities, especially for the single slip orientation. The plots of the plastic curvature
components in Figures 4.12 and 4.13 (there is no plastic curvature for N = 0) show that there is a
concentration of the peak values at the notch region.

A comparison of the plastic strain distributions is shown in Figures 4.14 and 4.15 for both
micropolar and classical crystal plasticity models. The qualitative characteristics of the contours
are similar for all cases. As expected, the classical model displays the largest peak values of plastic
strain, as well as the largest regions of localization. The effect of increasing the couple modulus,
i.e. N, seems to retard the localization of plastic strain at the notch. Figure 4.14 shows a plot of the
plastic strain magnitude across the top of the notch (path shown in red), and there do not appear
to be any generalizations that can be drawn from this data amongst all cases. It was expected that
the classical crystal plasticity model might display higher and narrower peaks than the micropolar
counterpart. This is the case for the double slip oriented crystal, but does not hold for the case of
single slip.

4.5.3 Simulation Set 3: Semi-infinite Bicrystal

The finite element model geometry is shown in Figure 4.16. The bicrystal is situated such that the
crystals are vertically stacked in the x2 direction with each crystal having thickness, d. Periodic
boundary conditions are applied in the x1 direction for both displacements and lattice rotations
rendering the model infinite in this direction. Each crystal is meshed with 400 elements, 40 in the
x1 direction and 10 in the x2 direction. The bottom of crystal 1 is fixed against displacements in
both the x1 and x2 directions, and a uniform displacement is applied to the top surface of crystal
2 in the x1 direction, while the lattice rotations on the top and bottom surfaces are unconstrained.
The general setup, as in Shu and Fleck [216], is that crystal 1 throughout all of these simulations
remains fixed in a symmetric configuration, while the orientation angle (shown as θ in the figure)
of crystal 2 is varied from 0-60 degrees. In addition to varying crystal orientation, a couple of the
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Figure 4.7. Load-deflection curves for notched plate.

other micropolar material parameters have been studied, namely the effect of curvature induced
slip system hardening (A2 6= 0) as well as the plastic curvature length parameter, `η

p . A more
systematic and thorough set of simulations is in the process of being setup and performed to explore
in more detail the full range and interplay of material parameters available within the model. The
fixed material constants are listed in Table 4.3, and those that are varied throughout the different
simulations are listed in Table 4.4. For the most part, the material constant specification is in
accord with what has been used in the related previous work of Forest et al. [77]. Simulation Case
1 is intended for comparison to Case 3 to determine the effect of curvature-induced slip hardening,
Cases 2-5 examine the impact on the bicrystal misorientation for fixed plastic length parameter
and strain-hardening curvature modulus, Case 6 can be compared to Case 3 to see what effect an

Table 4.3. Simulation Set 3 Fixed Material Parameters.
E 200,000 MPa ν 0.3
N 0.75 `e 0.08 mm
γ̇0 1 s−1 r0 50 MPa
A1 300 MPa q1 0
B 0 q2 0
g0 5 MPa m 2
ϕ̇0 1 s−1 rc0 0.0005 MPa-mm
A3 0 q3 0
gc0 0.1 MPa-mm mc 1
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(a) (b)

(c) (d)

Figure 4.8. Rotation magnitude (a) single slip (N = 0.95) (b)
symmetric double slip (N = 0.95) (c) single slip (N = 0) and (d)
symmetric double slip (N = 0).

Table 4.4. Simulation Set 3 Variable Material Parameters.
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

A2 0 500 MPa 500 MPa 500 MPa 500 MPa 500 MPa N/A
`η

p 0.1 mm 0.1 mm 0.1 mm 0.1 mm 0.1 mm 10 mm N/A
θ 20◦ 0◦ 20◦ 40◦ 60◦ 20◦ 20◦
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(a) (b)

(c) (d)

Figure 4.9. ε [12] (a) single slip (N = 0.95) (b) symmetric double
slip (N = 0.95) (c) single slip (N = 0) and (d) symmetric double
slip (N = 0).
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(a) (b)

(c) (d)

Figure 4.10. ε
p
[12] (a) single slip (N = 0.95) (b) symmetric double

slip (N = 0.95) (c) single slip (N = 0) and (d) symmetric double
slip (N = 0).
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(a) (b)

(c) (d)

Figure 4.11. ε
e
[12] (a) single slip (N = 0.95) (b) symmetric double

slip (N = 0.95) (c) single slip (N = 0) and (d) symmetric double
slip (N = 0).

(a) (b)

Figure 4.12. κ
p
13 (a) single slip (N = 0.95) (b) symmetric double

slip (N = 0.95).
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(a) (b)

Figure 4.13. κ
p
23 (a) single slip (N = 0.95) (b) symmetric double

slip (N = 0.95).

(a) (b) (c)

Figure 4.14. Plastic strain ε
p
22 distributions across the top of the

notch (a) single slip (b) double slip.

139



(a) (b)

(c) (d)

(e) (f)

Figure 4.15. Plastic strain ε
p
22 distributions in the notched plate

(a) single slip (N = 0) (b) double slip (N = 0) (c) single slip (N =
0.95) (d) double slip (N = 0.95) (e) single slip (classical) (f) double
slip (classical)
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Figure 4.16. Model Geometry.

increase in the plastic curvature length parameter has, and Case 7 shows the response of a crystal
in which plastic curvature has been suppressed, i.e. ϕ̇0 = 0. All cases have been performed for two
different bicrystal thicknesses, d = 50 µm and d = 0.5 mm to assess the impact of the length-scale
effects.

The results are summarized in Figures 4.17-4.25 with Figures 4.17 and 4.18 showing the com-
parison amongst all simulation cases for the two different bicrystal thicknesses and Figures 4.19-
4.25 showing the comparisons of each individual simulation case for the two thicknesses consid-
ered. The stress-strain curves are generated by plotting tensorial shear strain versus the sum of the
reaction forces at the displacement controlled top surface of crystal 2. The figures showing the
geometrically-necessary dislocation density are, of course, not a direct measure of this quantity as
it is not a directly attainable constitutive quantity. Instead we use the fact that the plastic curvature
is reflective of the measure of GN dislocation density as indicated in Section 4.3.1.2 (Micropolar
Case) on incompatibility mechanics and the quantity used in the plots is defined as

ρGND =
√(

κ
p
13/b

)2 +
(
κ

p
23/b

)2 (4.237)

The GN dislocation densities and lattice rotations reported in the figures are plotted at the midsec-
tion of the crystal where the origin of the x2 axis has been fixed to the base of crystal 1, and the red
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line down the center of the plots represents the grain boundary. In other words, data from crystal 1
is on the left side of the plots and data from crystal 2 is on the right.

Examining the stress-strain response of the 100 µm thick bicrystal (Figure 4.17) we see that
a fairly wide range of yield strengths, from ∼50-200 MPa, is obtained for the various simulation
cases. The effect of the plastic length scale parameter is significant and depending on its magnitude,
it can affect both the initial yield strength and the strain-hardening behavior as can be seen by
comparing Case 3 and 7 to Case 1. With the smaller plastic length parameter, the initial yield
strength is approximately the same as when there is no rotationally-induced slip hardening, but
with the larger value there is an increase in both the yield strength and strain hardening rate. With
the limited number of simulations run thus far it is hard to make too many conclusions on the
stress-strain response from simulation Cases 2-6 other than just observing how the misorientation
affects the response. It is interesting to also note that the when plastic curvature is neglected , at
least for the particular orientation considered, that the bicrystal had a higher yield strength than
the when the plastic curvature was active for the same plastic length parameter. This indicates that
plastic curvature can contribute to inelastic accommodation of deformation even at early stages of
loading, and this conclusion is further supported by Case 6 in which the increased yield strength
is a direct result of the increased rotationally-induced slip hardening resulting from the increase in
the plastic length parameter.

Looking at the distributions of GND density and lattice rotations in at the midsection of the
bicrystal Figures 4.17 and 4.18, we see that the case without rotationally-induced slip hardening
(Case 1) results in the highest peak GND density and that as one would expect that this aspect of
slip system hardening would tend to temper the magnitude of the lattice rotation gradients near the
boundary. This claim is further validated by Case 6 in that the increased effect of the rotationally-
induced slip hardening further reduces the lattice rotation gradients near the boundary as compared
to Cases 1 and 3. Notably Cases 2 and 7 have zero GND densities which in Case 7 is due to the
absence of plastic curvature and the definition of GND density given in equations (4.237), but for
Case 2 this is the result of the homogenous deformation of the bicrystal.

The results comparison for the 1mm thick bicrystal support all of the claims previously made
about the development of the GND density and lattice rotations (Figure 4.18), however, it is ap-
parent from investigation of the stress-strain curves that the effects of the rotationally-induced slip
system hardening are much less pronounced for the thicker bicrystal as would be expected due to
the less restricted nature of plastic flow for this geometry, i.e. smaller ratio of `η

p/d. Other than
that, the most notable feature of any of the 1mm bicrystal simulations is the stress-strain curve of
Case 6 where there is a plateau in the curve around 0.4% strain which then resumes hardening
at approximately the initial hardening rate again around 0.8% strain. At this point in time, the
reason for this behavior is not completely understood, but the data suggests that there is a transi-
tion in strain hardening behavior from that of being initially dominated by rotational plasticity to
translational plasticity, which then transitions back to being dominated by the rotational modes.

Focusing on the results that compare each simulation case at the two different bicrystal thick-
nesses (Figures 4.19-4.25), a few observations are enumerated. In both Cases 1 and 2, no length-
scale dependent effects exist in terms of stress-strain response and lattice rotation, due in the first
case to the lack of rotationally induced slip system hardening and in the latter to the state of ho-
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(a)

(b) (c)

Figure 4.17. (a) Stress-strain curves, (b) GND density distribu-
tions, and (c) rotation distributions for all simulations with 2d =
100 µm.
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(a)

(b) (c)

Figure 4.18. (a) Stress-strain curves, (b) GND density distribu-
tions, and (c) rotation distributions for all simulations with 2d =
1mm.
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(a) (b)

(c)

Figure 4.19. Case 1: (a) Stress-strain curves, (b) GND density
distributions, and (c) rotation distributions.

(a) (b)

Figure 4.20. Case 2: (a) Stress-strain curves and (b) rotation
distributions.
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(a)

(b) (c)

Figure 4.21. Case 3: (a) Stress-strain curves, (b) GND density
distributions, and (c) rotation distributions.
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(a)

(b) (c)

Figure 4.22. Case 4: (a) Stress-strain curves, (b) GND density
distributions, and (c) rotation distributions.
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(a)

(b) (c)

Figure 4.23. Case 5: (a) Stress-strain curves, (b) GND density
distributions, and (c) rotation distributions.
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(a)

(b) (c)

Figure 4.24. Case 6: (a) Stress-strain curves, (b) GND density
distributions, and (c) rotation distributions.
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(a) (b)

Figure 4.25. Case 7: (a) Stress-strain curves and (b) rotation
distributions.

mogenous deformation of the bicrystal. In each of the simulations including rotationally-induced
slip hardening with a heterogeneous deformation field the yield strength of the 100 µm bicrystal is
always higher than that of the 1 mm bicrystal with the magnitude of this difference depending on
the misorientation of the two crystals. One unexpected and interesting observation to emerge from
these comparisons is that of simulation Case 7. Considering that plastic curvature was not active
for these simulations, it was expected that stress-strain curves would be identical. However, the 1
mm thick bicrystal response deviates from the 100 µm response momentarily at the onset of yield
seemingly indicating that this is some sort of elastic micropolar effect.

4.6 Summary

The objective of this work was to develop an advanced continuum crystal plasticity theory capa-
ble of accounting for more realistic treatment of GBs. Based on the theoretical developments of
Clayton et al. [47] as a starting point, it was envisioned that this could be achieved in terms of
their proposed finite deformation micropolar crystal plasticity theory that incorporates a constitu-
tive dependence on geometrically necessary dislocations and disclinations. Upon delving into the
details of their constitutive theory, a few logical inconsistencies and ambiguous propositions were
discovered within their framework that we could not sort out. The nature of these issues touches all
aspects of the model (kinematics, thermodynamics and balance laws, and kinetics), and depending
on the intent of Clayton et al. [47] it could be recast in a consistent manner in a number of possible
ways. Some of the inconsistencies have been pointed out in a previous progress report, and they
are briefly recounted here.

The discussion of kinematics is ambiguous in terms of what is intended. On the one hand,
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there is the extension of the traditional two-term multiplicative decomposition of the deformation
gradient to include an additional term representing the incompatibility that develops during het-
erogeneous plastic flow. Similar extensions of the traditional two-term decomposition also have
been proposed by Kratochvil [132], Horstemeyer and McDowell [117], Bammann [25], Regueiro
et al. [191], Hartley [112], and Lion [145] based on several physical justifications. One thing
that these models have in common is that they all maintain the classical structure of the non-polar
mechanical balance equations where the local forms of linear and angular momentum balance
are given by ∇x ·σσσ = 0 and σσσ = σσσT , respectively. However, when their discussion turns to the
director kinematics, it is unclear whether or not they intend to use the directors in the sense of
classical crystal plasticity as a way of uniquely identifying the plastic intermediate configuration
[154], or if they intend to use the directors in the sense of a micropolar or micromorphic model
in which the director strains lead to enhanced expressions of deformation power and therefore re-
sult in non-classical mechanical balance equations. This issue of kinematics obviously affects the
eventual treatment of thermodynamics and balance laws as well as the specification of evolution
equations. If the intent is to truly use a micropolar elastoplasticity theory, several modifications to
the theory need to made regarding the expressions of deformation power, rate of internal energy
generation, and the mechanical balance laws. For examples of micromorphic and micropolar the-
ories of elastoplasticity that deal with these issues the following references should be consulted
[79, 93, 137, 170, 171, 177, 217, 221]. If, however, the intent is to maintain the classical form of
the non-polar mechanical balance laws and introduce the GN dislocations and disclinations into
the model formulation, it is recommended that the principle of virtual power [81, 89, 157] be used
to derive the micro-force balance laws as in [7, 106] so that the appropriate coupling between the
macro- and micro-stresses is achieved.

A second and more physically-based concern rests with the proposition of using GN discli-
nation density as a continuum modeling quantity capable of representing various types of GBs.
Unlike the notion relating discrete and continuously distributed dislocations, such a connection be-
tween discrete and continuously distributed disclinations does not exist. This is due to the fact, as
pointed out by Anthony [13], that the rotational nature of a disclination defect cannot be smeared
out as you transition from smaller to larger scales of observation of the continuum at hand. For ex-
ample, the misorientation angle of a GB as viewed from a transmission election microscope is the
same misorientation angle that would be observed at lower scale of resolution using other imaging
techniques. There is no questioning the existence of discrete disclinations in Bravais lattices, as
they have been successfully used to describe the structure and misorientation-energy profiles of
general high-angle boundaries in many material systems (cf. [91]). It is the transition from this
discrete picture to the continuously distributed description at the continuum level and the appropri-
ateness of the GN disclination density tensor as a physical variable that can be related to relevant
crystallographic quantities that is ambiguous. As in the case for GN dislocations [15], there is no
unique decomposition of the continuously distributed GN disclination into a collection of discrete
defects over a given volume of material. Since the power of the disclination in describing GBs lies
in its discrete nature, we feel that inclusion of the GN disclination density tensor in a continuum
model with the intent of modeling GBs is on questionable physical grounds. It is our opinion that
the effectiveness of GBs against slip transmission be described in alternative ways, and that discli-
nation concepts can still be used to describe boundary strength in some manner, but not through
directly assigning boundaries a GN disclination density.
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In pursuit of the main objective, we set out to recast the framework of Clayton et al. [47]
in a more consistent setting. To simplify matters to a certain degree we adopted as a staring
point the geometrically-linear micropolar crystal plasticity model presented by Forest and collab-
orators [79, 217, 76, 77]. Their plasticity model rests on a multi-criterion formulation in which
independent flow rules have been supplied for plastic strain and torsion-curvature as outlined in
Section 4.3.3.1. We have also proposed a single criterion plasticity model in Section 4.3.3.2 that
has formal analogies to macroscopic micropolar elastoplasticity theories, but is presented here for
the first time in terms of a crystallographically-based plasticity theory. No computations have
been performed with the single criterion theory, but it does seem to have potential advantages over
the multi-criterion theory. For example, the formulation contains a natural back stress-like term
(resolved couple-stress) and the slip system-level yield function bears a striking similarity to that
proposed in Gurtin’s [106] slip gradient-based single crystal plasticity theory. Since Gurtin’s theory
is often used to compare to other generalized crystal plasticity formulations, this would seemingly
make comparing our theory to the existing literature a simpler task. Furthermore, the number
of additional material constants required for the single criterion model is significantly reduced as
compared to the multi-criterion model, and would therefore remove the uncertainty of specifying
the non-classical constants that are required for the plastic torsion-curvature flow rule. Ultimately,
which type of plasticity formulation will be deemed more physically appropriate for the modeling
objectives at hand will be decided through further analytical and computational studies.

In regard to developing a GB sensitive crystal plasticity model, we have proposed a composite-
type of approach in which there is a clear delineation between grain interior and GB regions. In
the grain interiors, we choose to use a traditional associative Schmid Law flow rule, whereas in the
GB regions we propose the novel idea of using a non-associative flow rule. This would account
for the fact that the slip transmission process depends not only on the resolved shear stress on the
incoming slip plane on one side of the GB, but also on the resolved shear stress on the outgoing
slip plane on the other side of the GB as well. The resistance to slip transfer is envisioned to be
boundary specific, and to be based upon the crystallographic structure of the GB as well as the
orientation of the incoming/outgoing slip planes. It is within the determination of the transmission
slip resistance that we believe the disclination concept may prove to be useful. Depending on the
type of boundary and its structure in terms of GB dislocations and/or disclination structural units,
the boundary strength in terms of a scalar slip system-level resistance variable would take different
values.

In conclusion, we have spent the majority of the time on this project reshaping the model formu-
lation to achieve the main objective of developing an advanced continuum crystal plasticity model
sensitive to GB structure and the role they play in slip transfer, instead of merely implementing the
model of Clayton et al. [47] and performing calculations. Nonetheless, some potentially fruitful
and novel theoretical developments have emerged along the way which will be further pursued
in future work. The result of these pursuits will be given in a forthcoming PhD dissertation and
related journal publications.
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4.7 Appendix: ABAQUS UEL subroutine

Listed here is the ABAQUS simulation code User ELement subroutine (UEL) written by Jason R.
Mayeur to implement the formulation described in this chapter.
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c Linear (4 node) and Quadratic (8 node) User Element for 2D Micropolar Elasticity
c
c Developed by:
c ------------- 
c Rajesh S. Kumar 
c G.W.Woodruff School of Mech. Engg.
c Georgia Tech., Atlanta, GA 30332
c -------------
c Date: 11 Oct 2003
c Last Modified: 30 Oct 2003
c Checked on 
c       _____________
c       Modified by:
c       Jason Mayeur
c       Nov 3, 2007
c The changes within this version of the UEL have been made to try 
c and address the convergence/crashing issues associated with the 
c activation of the plastic curvature evolution.  Additionally, the number
c of state variables used in this analysis has been increased so that some 
c additional field quantities are available for post-processing
c -------------------------------------------
c
c       Input to be specified in the INPUT file
c       For general anisotropic micropolar media with no associated LCA
c For 2D micropolar isotropic elastic media there are 4 material constants
c     PROPS - E, nu, N (coupling constant) and L (characteristic length)
c           lambda = E*nu/[(1+nu)*(1-2*nu)]
c           mu = E/[2*(1+nu)]
c           mu2 = mu - kappa/2
c           kappa = (2*N^2*mu)/(1-N^2)
c           gamma = 4*L^2*mu
c STATE VARIABLES in the UEL
c     -------------------------------------------

c

 SUBROUTINE UEL(RHS,AMATRX,SVARS,ENERGY,NDOFEL,NRHS,NSVARS,
     1 PROPS,NPROPS,COORDS,MCRD,NNODE,U,DU,V,A,JTYPE,TIME,DTIME,
     2 KSTEP,KINC,JELEM,PARAMS,NDLOAD,JDLTYP,ADLMAG,PREDEF,
     3 NPREDF,LFLAGS,MLVARX,DDLMAG,MDLOAD,PNEWDT,JPROPS,NJPROP,
     4 PERIOD)

       INCLUDE 'ABA_PARAM.INC'

parameter(zero=0.d0,half=0.5d0,quart=0.25d0,one=1.d0,two=2.d0,
     1  tol=0.000001)
c       Global Arrays

       DIMENSION RHS(MLVARX,*),AMATRX(NDOFEL,NDOFEL),PROPS(*),
     1        SVARS(*),ENERGY(*),COORDS(MCRD,NNODE),U(NDOFEL),
     2        DU(MLVARX,*),V(NDOFEL),A(NDOFEL),TIME(2),PARAMS(*),
     3        JDLTYP(MDLOAD,*),ADLMAG(MDLOAD,*),DDLMAG(MDLOAD,*),
     4        PREDEF(2,NPREDF,NNODE),LFLAGS(*),JPROPS(*)
c ----------2D 4 Noded Element --------

c
c 4+-------------+3
c     |      |eta   |
c     |      |      |
c     |      *--xi  |
c     |             
c 1+-------------+2
c

c LOCAL VARIABLES/ARRAYS
dimension 

     x XGAUSS(4),
     x YGAUSS(4),
     x B(6,12),
     x STIFFMAT(12,12),
     x FORCEVEC(12),
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     x dU1(12),
     x C_0(4,4),
     x C(4,4),
     x C_INV(4,4),
     x C_EP(4,4),
     x D_0(2,2),
     x D(2,2),
     x D_INV(2,2),
     x D_EP(2,2),
     x B_EP(4,2),
     x A_EP(2,4),
     x C_BAR(6,6),
     x C_BAR_EP(6,6),
     x E_BAR(6),
     x dE_BAR(6),
     x E_BAR_P_N(6),
     x E_BAR_P_N1(6),
     x dE_BAR_P(6),
     x E_BAR_E_N1(6),
     x SIG_BAR(6),
     x S0(2,2),
     x XN0(2,2),
     x T0(3,2),
     x S(2,2),
     x XN(2,2),
     x T(3,2),
     x Q(2,2),
     x P(4,2),
     x H(2,2),
     x P_BAR(6,4),
     x DELTA2(2,2),
     x Q1M(2,2),
     x Q2M(2,2),
     x QC1M(2,2),
     x QC2M(2,2),
     x R_BAR_N(4),
     x G_BAR_N(4),
     x R_BAR_N1(4),
     x G_BAR_N1(4),
     x dR_BAR(4),
     x TAU_BAR(4),
     x dLAMBDA_N(4),
     x dLAMBDA(4),
     x LAM_DOT_0(4),
     x EXP_BAR(4),
     x XL2V(4),
     x dTHETA_N(2),
     x dTHETA(2),
     x dGAMMA_N(2),
     x dGAMMA(2),
     x dEPS(4),
     x dKAP(2),
     x HR_BAR(4,4),
     x ddEPS_PdS(4,4),
     x ddGAMdS_T(2,4),
     x H1D(2,2),
     x PD_T(2,4),
     x ddGAMdM_T(2,2),
     x ddEPS_PdM(4,2),
     x ddTHETdM_T(2,2),
     x ddKAP_PdM(2,2),
     x H2D(2,2),
     x H3D(2,2),
     x HD_T(2,2),
     x HP(2,2),
     x TEMP1(4),
     x TEMP2(2,2),
     x TEMP3(2,2),
     x TEMP4(4,4),
     x TEMP5(2,2),
     x TEMP6(2),
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     x TEMP7(2),
     x TEMP8(2),
     x TEMP9(4,2)

       NUM_SLIP_SYS = 2
       NUM_INT_P = 4

 AINTC = 1.
 BINTC = 1.

       debug = 2 

pi = 4.*atan(1.)

c *************************************************************************************
c Element Initializations: Formulation is based on Original Coordinates 
c in Undeformed Configuration
c *************************************************************************************

c x coordinates of the 4 Gauss points
data XGAUSS /-0.577350269189626d0, 0.577350269189626d0, 

     x              0.577350269189626d0, -0.577350269189626d0/
c y coordinates of the 4 Gauss points

data YGAUSS /-0.577350269189626d0, -0.577350269189626d0, 
     x              0.577350269189626d0,  0.577350269189626d0/

x1=coords(1,1)
y1=coords(2,1)
x2=coords(1,2)
y2=coords(2,2)
x3=coords(1,3)
y3=coords(2,3)
x4=coords(1,4)
y4=coords(2,4)

RHS(1:12,1)=0.

call zero_array(12,12,AMATRX)
call zero_array(4,4,C_0)
call zero_array(2,2,D_0)
call zero_array(6,6,C_BAR)

c *************************************************************************************
c       Define constitutive model properties
c *************************************************************************************

E = props(1) ! Young's Modulus
XNU = props(2) !Poisson's ratio
CN = props(3) !Elastic coupling constant
XL1 = props(4) ! Material length scale entering elastic properties        
GAMMA_DOT_ZERO = props(5) !Ref shearing rate
R_ZERO = props(6) ! Initial slip threshold stress
H_DIR = props(7) ! Direct hardening constant for slip
Q1 = props(8)
H_DYN = props(9) ! Dynamic recovery constant for slip

      H_KC = props(10)
Q2 = props(11)
G_ZERO = props(12) ! Reference shear strength

      EXPM = props(13) ! Slip flow exponent
      THETA_DOT_ZERO = props(14) !Ref curvature rate

RC_ZERO = props(15) ! Initial curvature threshold stress
HC_DIR = props(16) ! Hardening modulus for curvature
QC1 = props(17)
HC_DYN = props(18)
H_EC = props(19)
QC2 = props(20)
GC_ZERO = props(21) ! Reference curvature strength
EXPMC = props(22) ! Curvature flow exponent
XL2 = props(23) ! Material length scale entering curvature flow rule
PSI = props(24) ! Orientation angle for 2D crystal

c *************************************************************************************
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c Define elastic constants for a linearized isotropic micropolar material
c *************************************************************************************

XLAMBDA = (E*XNU)/((1+XNU)*(1-2.*XNU))
XMU = E/(2.*(1+XNU))
XKAPPA = 2.*CN**2.*XMU/(1-CN**2.)
XMU2 = XMU - XKAPPA/2.
XGAMMA = 4.*XL1**2.*XMU

c *************************************************************************************
c       Define elastic stiffness matrix for a linearized micropolar material
c *************************************************************************************

      C_0(1,1) = XLAMBDA + 2.*XMU2 + XKAPPA
      C_0(1,2) = XLAMBDA
      C_0(2,1) = XLAMBDA
      C_0(2,2) = XLAMBDA + 2.*XMU2 + XKAPPA
      C_0(3,3) = XMU2 + XKAPPA
      C_0(3,4) = XMU2
      C_0(4,3) = XMU2
      C_0(4,4) = XMU2 + XKAPPA

      D_0(1,1) = XGAMMA
      D_0(2,2) = XGAMMA

 LAM_DOT_0(1:2) = GAMMA_DOT_ZERO
       LAM_DOT_0(3:4) = THETA_DOT_ZERO

 EXP_BAR(1:2) = EXPM
 EXP_BAR(3:4) = EXPMC
 XL2V(1:2) = XL2

 
c *************************************************************************************
c Define slip system vectors in crystal coordinate system for planar double slip
c s0(i,j) - jth slip system and the ith component of the slip direction
c xn0(i,j) - jth slip system and the ith component of the slip plane normal
c *************************************************************************************
c Planar Double Slip
c *************************************************************************************

S0(1,1) = 1. 
      S0(2,1) = 0. 

XN0(1,1) = 0.
      XN0(2,1) = 1.
      T0(3,1) = 1.

T0(1:2,1) = 0.

S0(1,2) = cos(70.2*pi/180.)
S0(2,2) = sin(70.2*pi/180.)
XN0(1,2) = -sin(70.2*pi/180.)
XN0(2,2) = cos(70.2*pi/180.)
T0(3,2) = 1.
T0(1:2,2) = 0.

c     *************************************************************************************
c Initialize arrays that appear in the threshold stress evolution equations
c     *************************************************************************************

do i = 1,2
 do j = 1,2
  DELTA2(i,j) = 0.0
 end do
  DELTA2(i,i) = 1.0
end do
  

  Q1M  = Q1 + (1. - Q1)*DELTA2
  Q2M  = Q2 + (1. - Q2)*DELTA2
  QC1M = QC1 + (1. - QC1)*DELTA2
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        QC2M = QC2 + (1. - QC2)*DELTA2

c *************************************************************************************      
c Flag variable for determining whether or not this increment is the first increment in
c the simulation in order to properly intialize the state variable arrays
c ************************************************************************************* 
 UMAG = 0.
      do i = 1,NDOFEL

 UMAG = UMAG + (U(i)-DU(i,1))**2.
 dU1(i) = dU(i,1)
end do
UMAG = sqrt(UMAG)

     

c write(7,*),'ELEMENT NUMBER =',JELEM
c write(7,*),'**************************************************************************'
c write(7,*),'Nodal Displacement Vector'
c do i = 1,4
c  write(7,1),U((i-1)*3+1),U((i-1)*3+2),U((i-1)*3+3)
c end do
c write(7,*),'**************************************************************************'

c *************************************************************************************      
c Loop over integration points to perform element level calculations
c ************************************************************************************* 

n = 0 !counter variable for reading state variable arrays
      m = 0 !counter variable for storing state variable arrays

do KINTP = 1,NUM_INT_P

if (debug.eq.1) write(7,*) 'INTEGRATION POINT',KINTP
c write(7,*),'kinc =',kinc,'int pt = ',kintp

c -------------------------------------------------------------------------------------
c Initialize state variable arrays
c -------------------------------------------------------------------------------------
       if ((KINC.eq.0).or.(UMAG.lt.tol)) then

  do j = 1,6 
   E_BAR(j) = 0.
   E_BAR_P_N(j) = 0.
   SIG_BAR(j) = 0.
  end do

  do j = 1,num_slip_sys
   R_BAR_N(j) = R_ZERO
   R_BAR_N(j+2) = RC_ZERO
   G_BAR_N(j) = G_ZERO
   G_BAR_N(j+2) = GC_ZERO
  end do

 else !Starting values are end values from a previous call to the subroutine

  do j=1,6
   n = n + 1
   E_BAR(j) = svars(n)

        end do

  do j=1,6
   n = n+1
   SIG_BAR(j) = svars(n)

        end do

  do j=1,6
   n = n+1
   E_BAR_P_N(j) = svars(n)

        end do

  do j=1,num_slip_sys*2
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   n = n+1
   R_BAR_N(j) = svars(n)

        end do
   
  do j=1,num_slip_sys*2
   n = n+1
   G_BAR_N(j) = svars(n)

        end do

 end if !Initialization flow control
c -------------------------------------------------------------------------------------
c End of initialization of state variable arrays
c -------------------------------------------------------------------------------------

c     Initializations of various arrays

          call zero_array(12,12,STIFFMAT)
    call zero_array(6,12,B)
    call zero_vector(6,E_BAR)
    call zero_vector(6,dE_BAR)

c xi and eta at the current gauss point - kintp

    xi=xgauss(kintp)
    eta=ygauss(kintp)

c shape functions evaluated at the gauss point

    shape1=quart*(one-xi)*(one-eta)
    shape2=quart*(one+xi)*(one-eta)
    shape3=quart*(one+xi)*(one+eta)
    shape4=quart*(one-xi)*(one+eta)

c derivative of shape functions wrt natural coordinates

dN1dxi=-quart*(one-eta)
dN1deta=-quart*(one-xi)
dN2dxi=quart*(one-eta)
dN2deta=-quart*(one+xi)
dN3dxi=quart*(one+eta)
dN3deta=quart*(one+xi)
dN4dxi=-quart*(one+eta)
dN4deta=quart*(one-xi)

c derivative of physical coordinates wrt natural coords

dxdxi=dN1dxi*x1+dN2dxi*x2+dN3dxi*x3+dN4dxi*x4
dxdeta=dN1deta*x1+dN2deta*x2+dN3deta*x3+dN4deta*x4
dydxi=dN1dxi*y1+dN2dxi*y2+dN3dxi*y3+dN4dxi*y4
dydeta=dN1deta*y1+dN2deta*y2+dN3deta*y3+dN4deta*y4

c determinant of the Jacobian transformation between physical and natural
c coords

detJ=dxdxi*dydeta-dxdeta*dydxi

c derivative of shape functions wrt physical coords x and y

dN1dx=(dN1dxi*dydeta-dN1deta*dydxi)/detJ
dN1dy=(-dN1dxi*dxdeta+dN1deta*dxdxi)/detJ
dN2dx=(dN2dxi*dydeta-dN2deta*dydxi)/detJ
dN2dy=(-dN2dxi*dxdeta+dN2deta*dxdxi)/detJ
dN3dx=(dN3dxi*dydeta-dN3deta*dydxi)/detJ
dN3dy=(-dN3dxi*dxdeta+dN3deta*dxdxi)/detJ
dN4dx=(dN4dxi*dydeta-dN4deta*dydxi)/detJ
dN4dy=(-dN4dxi*dxdeta+dN4deta*dxdxi)/detJ

c POPULATE STRAIN-DISPLACEMENT MATRIX WITH APPROPRIATE COMPONENTS 
C B(NDI+NSHR,NDOFEL)
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B(1,1)=dN1dx
B(1,4)=dN2dx
B(1,7)=dN3dx
B(1,10)=dN4dx

B(2,2)=dN1dy
B(2,5)=dN2dy
B(2,8)=dN3dy
B(2,11)=dN4dy

B(3,2)=dN1dx
B(3,3)=-shape1
B(3,5)=dN2dx
B(3,6)=-shape2

    B(3,8)=dN3dx
 B(3,9)=-shape3

B(3,11)=dN4dx
B(3,12)=-shape4

B(4,1)=dN1dy
B(4,3)=shape1
B(4,4)=dN2dy
B(4,6)=shape2

    B(4,7)=dN3dy
B(4,9)=shape3
B(4,10)=dN4dy
B(4,12)=shape4

B(5,3)=dN1dx
B(5,6)=dN2dx
B(5,9)=dN3dx
B(5,12)=dN4dx

B(6,3)=dN1dy
B(6,6)=dN2dy
B(6,9)=dN3dy
B(6,12)=dN4dy

c CALCULATE THE STRAIN VECTOR BASED ON THE DISPLACEMENT VECTOR FED IN BY ABAQUS
C {E}=[B]{U}

        E_BAR  = matmul(B,U)
  dE_BAR = matmul(B,dU1)

 1 format(6(e12.5,2x))
c-------------------------------------------------------------------------------------------
c-------------------------------------------------------------------------------------------
c-------------------------------------------------------------------------------------------
c Explicit Integration of Constitutive Equations (UMAT)

c Rotate elasticity matrix to its global orientation (for isotropy C=C_0

C = C_0

D = D_0

C_BAR(1:4,1:4) = C(1:4,1:4)
C_BAR(5:6,5:6) = D(1:2,1:2) 

if (debug.eq.1) write(7,*) 'CHECKPOINT 1'

c Rotate slip directions from crystal basis to global coordinates

Q(1,1) = cos(PSI*pi/180.)
Q(1,2) = -sin(PSI*pi/180.)
Q(2,1) = sin(PSI*pi/180.)
Q(2,2) = cos(PSI*pi/180.)

          S  = matmul(Q,S0)
    XN = matmul(Q,XN0)
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          T(3,1) = T0(3,1)
T(3,2) = T0(3,2)  

    T(1:2,1) = 0.
    T(1:2,2) = 0.

c Calculate resolved shear stress and resolved moment stress
c Define slip tensor in vectorial form

P(1,1) = XN(1,1)*S(1,1) 
P(2,1) = XN(2,1)*S(2,1)
P(3,1) = XN(1,1)*S(2,1)
P(4,1) = XN(2,1)*S(1,1)
P(1,2) = XN(1,2)*S(1,2)
P(2,2) = XN(2,2)*S(2,2)
P(3,2) = XN(1,2)*S(2,2)
P(4,2) = XN(2,2)*S(1,2)

H(1,1) = S(1,1)*T(3,1) ! Curvature system
H(2,1) = S(2,1)*T(3,1) ! Curvature system
H(1,2) = S(1,2)*T(3,2) ! Curvature system
H(2,2) = S(2,2)*T(3,2) ! Curvature system

call zero_array(6,4,P_BAR)

P_BAR(1:4,1:2) = P(1:4,1:2)
P_BAR(5:6,3:4) = H(1:2,1:2)

if (debug.eq.1) write(7,*) 'CHECKPOINT 2'
C******************************************************************************
C******************************************************************************
C******************************************************************************
     

c CALCULATE THE FIRST ESTIMATE OF THE RESOLVED STRESSES

    TAU_BAR = matmul(transpose(P_BAR),SIG_BAR)

c CALCULATE THE SHEARING/CURVATURE RATES FROM THE FLOW RULE

do 50 i = 1,4
     dLAMBDA_N(i) = 0.
     TAUD = max((abs(TAU_BAR(i))-R_BAR_N(i)),0.)
     if (TAUD.eq.0.0) GOTO 50
      SGNTAU_BAR_I = abs(TAU_BAR(i))/TAU_BAR(i)
      dLAMBDA_N(i)  = LAM_DOT_0(i)*(TAUD/G_BAR_N(i))**EXP_BAR(i)*

     &                      SGNTAU_BAR_I*DTIME
50     continue

C CALCULATE THE MATRICES NECESSARY FOR DETERMINING THE PLASTIC ROTATION 
C INCREMENTS, dTHETA

call zero_array(2,2,HD_T)
call zero_array(2,2,HP)
call zero_array(2,2,H2D)
call zero_array(2,2,H3D)
call zero_vector(2,dTHETA)

do i = 1,2
 if (dLAMBDA_N(i+2).eq.0.0) GOTO 53
 do j = 1,2
  SGNTAU_BAR_I = abs(TAU_BAR(i+2))/TAU_BAR(i+2)

        SGNTAU_BAR_J = abs(TAU_BAR(j+2))/TAU_BAR(j+2)
        HP(i,j) = H(i,j) / XL2V(j)

  HD_T(i,j) = EXP_BAR(i+2)*dLAMBDA_N(i+2)/(abs(TAU_BAR(i+2))-
     &            R_BAR_N(i+2))*SGNTAU_BAR_I*H(j,i)

  H2D(i,j) = -EXP_BAR(i)*dLAMBDA_N(i)/(abs(TAU_BAR(i))-R_BAR_N(i))
     &              *H_KC*Q2M(i,j)*SGNTAU_BAR_J

  H3D(i,j) = -EXP_BAR(i+2)*dLAMBDA_N(i+2)/(abs(TAU_BAR(i+2))-
     &              R_BAR_N(i+2))*(HC_DIR*QC1M(i,j)-HC_DYN*R_BAR_N(i+2))
     &              *SGNTAU_BAR_J

 end do
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53 end do

TEMP2 = matmul(matmul(HD_T,D),HP)

TEMP3 = DELTA2 + BINTC*TEMP2 - BINTC*H3D

      dKAP(1:2) = dE_BAR(5:6)
dTHETA_N(1:2) = dLAMBDA_N(3:4)

      TEMP6 = matmul(matmul(HD_T,D),dKAP)

TEMP7 = dTHETA_N + BINTC*TEMP6

call inverse(2,TEMP3,TEMP2)

      dTHETA = matmul(TEMP2,TEMP7)

C CALCULATE THE MATRICES NECESSARY FOR DETERMINING THE PLASTIC SLIP INCREMENTS,
C dGAMMA

      call zero_array(2,4,PD_T)
call zero_array(2,2,H1D)
call zero_vector(2,dGAMMA)

do i = 1,2
 if (dLAMBDA_N(i).eq.0.0) GOTO 51
 do j = 1,2
  SGNTAU_BAR_J = abs(TAU_BAR(j))/TAU_BAR(j)

        H1D(i,j) = -EXP_BAR(i)*dLAMBDA_N(i)/(abs(TAU_BAR(i))-R_BAR_N(i))
     &             *(H_DIR*Q1M(i,j) - H_DYN*R_BAR_N(i))*SGNTAU_BAR_J
       end do
51    end do

      do i = 1,2
 if (dLAMBDA_N(i).eq.0.0) GOTO 52
 do j = 1,4
  SGNTAU_BAR_I = abs(TAU_BAR(i))/TAU_BAR(i)
  PD_T(i,j) = EXP_BAR(i)*dLAMBDA_N(i)/(abs(TAU_BAR(i))-R_BAR_N(i))

     &              *SGNTAU_BAR_I*P(j,i)
 end do

52 end do

dEPS(1:4) = dE_BAR(1:4)

TEMP3 = matmul(matmul(PD_T,C),P)

TEMP5 = DELTA2 + AINTC*TEMP3 - AINTC*H1D

call inverse(2,TEMP5,TEMP3)

TEMP6 = matmul(matmul(PD_T,C),dEPS)
TEMP7 = matmul(H2D,dTHETA)

dGAMMA_N(1:2) = dLAMBDA_N(1:2)

TEMP8 = dGAMMA_N + AINTC*TEMP6 + AINTC*TEMP7

      dGAMMA = matmul(TEMP3,TEMP8)

if (debug.eq.1) write(7,*) 'CHECKPOINT 3'

c CALCULATE THE PLASTIC STRAIN/CURVATURE INCREMENTS

   dLAMBDA(1:2) = dGAMMA(1:2)
   dLAMBDA(3:4) = dTHETA(1:2) / XL2V(1:2)

         dE_BAR_P = matmul(P_BAR,dLAMBDA)

   dLAMBDA(3:4) = dLAMBDA(3:4) * XL2V(1:2)
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c CALCULATE THE ELASTIC & PLASTIC STRAIN VECTORS AT T + DT

   E_BAR_P_N1 = E_BAR_P_N + dE_BAR_P 
         E_BAR_E_N1 = E_BAR - E_BAR_P_N1

if (debug.eq.1) write(7,*) 'CHECKPOINT 4'

c CALCULATE THE STRESS AT N + 1

SIG_BAR = matmul(C_BAR,E_BAR_E_N1)

 116 format(6(e12.5,2x))

 112 format(6(f12.5,2x))

c CALCULATE SLIP SYSTEM VARIABLES FOR T + DT

      do i = 1,2
 do j = 1,2
  HR_BAR(i,j) = H_DIR*Q1M(i,j) - H_DYN*R_BAR_N(i)
  HR_BAR(i,j+2) = H_KC*Q2M(i,j)
  HR_BAR(i+2,j) = H_EC*QC2M(i,j)
  HR_BAR(i+2,j+2) = HC_DIR*QC1M(i,j) - HC_DYN*R_BAR_N(i+2)
 end do
end do
  
TEMP1 = abs(dLAMBDA)

dR_BAR = matmul(HR_BAR,TEMP1)

      R_BAR_N1 = R_BAR_N + dR_BAR
G_BAR_N1 = G_BAR_N

C******************************************************************************
C******************************************************************************
C******************************************************************************
C******************************************************************************
C******************************************************************************
c CALCULATE THE MATERIAL JACOBIAN
c

call zero_array(4,4,C_EP)
call zero_array(2,2,D_EP)

      call zero_array(4,2,B_EP)
call zero_array(6,6,C_BAR_EP)

      call zero_array(4,4,TEMP4)
call zero_array(4,2,TEMP9)
call zero_array(2,2,TEMP5)

TEMP4 = matmul(matmul(matmul(matmul(C,P),TEMP3),PD_T),C)

C_EP = C - AINTC*TEMP4

      TEMP9 = matmul(matmul(matmul(matmul(matmul(matmul(C,P),TEMP3),H2D)
     &      ,TEMP2),HD_T),D)

B_EP = AINTC*BINTC*TEMP9

TEMP5 = matmul(matmul(matmul(matmul(D,HP),TEMP2),HD_T),D)

D_EP = D - BINTC*TEMP5

C POPULATE THE GENERALIZED FINITE ELEMENT ELASTIC MATRIX

      C_BAR_EP(1:4,1:4) = C_EP(1:4,1:4)
C_BAR_EP(1:4,5:6) = B_EP(1:4,1:2)
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C_BAR_EP(5:6,5:6) = D_EP(1:2,1:2)

c            write(7,*)'CEP'
c     do i =1,6
c             write(7,990),C_BAR_EP(i,1),C_BAR_EP(i,2),C_BAR_EP(i,3),
c     &       C_BAR_EP(i,4),C_BAR_EP(i,5),C_BAR_EP(i,6)
c     end do

 990  format(6(f12.2,2x))
 991  format(4(f12.2,2x))
 992  format(4(e12.5,2x))

c Do matrix multiplications to get Stiffness Matrix

    STIFFMAT = matmul(matmul(transpose(B),C_BAR_EP),B)

c Update the element Stiffness matrix AMATRX

    AMATRX = AMATRX + STIFFMAT*detJ

c Calculate the element force vector for each integration point

    FORCEVEC = matmul(transpose(B),SIG_BAR)

c Sum integration point contributions to the total element force vector

 RHS(1:12,1) = RHS(1:12,1) - FORCEVEC(1:12)*detJ

c-------------------------------------------------------------------------------------------
c Store state variables
c-------------------------------------------------------------------------------------------
          if (debug.eq.1) write(7,*) 'CHECKPOINT 6' 

  do j=1,6
   m = m + 1
   svars(m) = E_BAR(j)

        end do

  do j=1,6
   m = m + 1
   svars(m) = SIG_BAR(j)

        end do

  do j=1,6
   m = m+1
   svars(m) =  E_BAR_P_N1(j)

        end do

  do j=1,num_slip_sys*2
   m = m+1
   svars(m) =  R_BAR_N1(j)

        end do
   
  do j=1,num_slip_sys*2
   m = m+1
   svars(m) = G_BAR_N1(j)

        end do

c-------------------------------------------------------------------------------------------
enddo !end loop over kintp (number of integration points)

c do i = 1,12
c  write(7,'(12(f9.2,1x))') (AMATRX(I,J),J=1,12)
c end do
c write(7,*)'***************************************************'
c write(7,'(12(f10.7,1x))') -ForceVecG
c write(7,*)'***************************************************'
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C do i = 1,NSVARS/4
c  write(7,989) 'STV',i,svars(i),svars(i+NSVARS/4),svars(i+NSVARS/2),svars(i+NSVARS*3/4)
C end do

 989    format(A3,1x,i3,f12.5,2x,f12.5,2x,f12.5,2x,f12.5)

c-------------------------------------------------------------------------------------------
return
end

c====================================================================
c====================================================================
c  Utility Subroutines
c====================================================================
c====================================================================
c====================================================================
c====================================================================
c
c  Calculate the inverse of a matrix using 
c  LU decomposition (Crout's method)
c
c  Reference: "Numerical Recipes" Section 2.3  p. 31
c
c--------------------------------------------------------------------

      subroutine inverse(n,a,b)

      include 'ABA_PARAM.INC'

      dimension a(n,n), b(n,n), c(n,n), index(n)

      do i = 1,n
         do j = 1,n
            c(i,j) = a(i,j)
         end do
      end do

      do i = 1,n
         do j = 1,n
            b(i,j) = 0.0
         end do
         b(i,i) = 1.0
      end do

      call kLU_Decomp(n,c,index)

      do j = 1,n
         call kLU_BackSub(n,c,index,b(1,j))
      end do

      return
      end

c====================================================================
c====================================================================
c
c  This sub performs an LU Decomposition (Crout's method) on the 
c  matrix "a". It uses partial pivoting for stability. The index()
c  vector is used for the partial pivoting.  The v() vector is 
c  a dummy work area.
c
c  Reference: "Numerical Recipes" Section 2.3  p. 31
c
c--------------------------------------------------------------------

      subroutine kLU_Decomp(n,a,index)

      include 'ABA_PARAM.INC'

      dimension a(n,n), index(n), v(n)
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      tiny = 1.0e-20

c--------------------------------------------------------------------
c  Loop over the rows to get the implicit scaling info.
c--------------------------------------------------------------------

      do i = 1,n
         a_max = 0.0
         do j = 1,n
            a_max = max(a_max,abs(a(i,j)))
         end do !j
         v(i) = 1.0 / a_max
      end do !i

c--------------------------------------------------------------------
c  Begin big loop over all the columns.
c--------------------------------------------------------------------

      do j = 1,n

         do i = 1,j-1
            sum = a(i,j)
            do k = 1,i-1
               sum = sum - a(i,k) * a(k,j)
            end do
            a(i,j) = sum
         end do

         a_max = 0.0
         do i = j,n
            sum = a(i,j)
            do k = 1,j-1
               sum = sum - a(i,k) * a(k,j)
            end do
            a(i,j) = sum
            dummy = v(i) * abs(sum)
            if ( dummy .gt. a_max ) then
               imax = i
               a_max = dummy
            end if
         end do

c--------------------------------------------------------------------
c  Pivot rows if necessary.
c--------------------------------------------------------------------

         if ( j .ne. imax ) then
            do k = 1,n
               dummy = a(imax,k)
               a(imax,k) = a(j,k)
               a(j,k) = dummy
            end do
            v(imax) = v(j)
         end if
         index(j) = imax

c--------------------------------------------------------------------
c  Divide by the pivot element.
c--------------------------------------------------------------------

         if ( a(j,j) .eq. 0.0 ) a(j,j) = tiny
         if ( j .ne. n ) then
            dummy = 1.0 / a(j,j)
            do i = j+1,n
               a(i,j) = a(i,j) * dummy
            end do
         end if

      end do !j
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      return
      end

c====================================================================
c====================================================================
c
c  Solves a set of simultaneous equations by doing back substitution.
c  The answer in returned in the b() vector.  The a(,) matrix
c  must have already been "LU Decomposed" by the above subroutine.
c
c  Reference: "Numerical Recipes" Section 2.3  p. 31
c
c--------------------------------------------------------------------

      subroutine kLU_BackSub(n,a,index,b)

      include 'ABA_PARAM.INC'

      dimension a(n,n), index(n), b(n)

      ii = 0

c--------------------------------------------------------------------
c  Do the forward substitution.
c--------------------------------------------------------------------

      do i = 1,n
         m = index(i)
         sum = b(m)
         b(m) = b(i)
         if ( ii .ne. 0 ) then
            do j = ii,i-1
               sum = sum - a(i,j) * b(j)
            end do
         else if ( sum .ne. 0.0 ) then
            ii = i
         end if
         b(i) = sum
      end do

c--------------------------------------------------------------------
c  Do the back substitution.
c--------------------------------------------------------------------

      do i = n,1,-1
         sum = b(i)
         if ( i .lt. n ) then
            do j = i+1,n
               sum = sum - a(i,j) * b(j)
            end do
         end if
         b(i) = sum / a(i,i)
      end do

      return
      end
      
c====================================================================
c====================================================================
c  Subroutine to initialize an arbitrary array
c====================================================================
c====================================================================
      subroutine zero_array(m,n,a)

      include 'ABA_PARAM.INC'

      dimension a(m,n)

      do i = 1,m
       do j = 1,n
        a(i,j) = 0.
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       end do
      end do

      return
      end
c====================================================================
c====================================================================
c  Subroutine to initialize an arbitrary vector
c====================================================================
c====================================================================
      subroutine zero_vector(m,a)

      include 'ABA_PARAM.INC'

      dimension a(m)

      do i = 1,m
        a(i) = 0.
      end do

      return
      end
c====================================================================
c====================================================================
c====================================================================
c====================================================================
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Chapter 5

Atomistic Simulations of Nanocrystal
Deformation
Principal Authors: Garritt J. Tucker, David L. McDowell and Jonathan A.
Zimmerman

5.1 Atomic-scale Deformation Kinematics for Bicrystal Grain
Boundaries under Shear Loading

This research presented in this section utilizes the method for calculating an atomic-scale defor-
mation gradient within the framework of atomistic simulations (described in detail in Chapter 2) to
examine bicrystal grain boundaries subjected to shear loading. Here, we calculate the deformation
gradient, its associated rotation tensor, and estimates of lattice curvature and vorticity for thin equi-
librated bicrystal geometries deformed at low temperature. These simulations reveal pronounced
deformation fields that exist in small regions surrounding the grain boundary, and demonstrate the
influence of interfacial structure on mechanical behavior for the thin models investigated. It is
shown that significant differences in deformation mechanisms exist for different grain boundary
structures and these mechanisms are responsible for varying lattice curvature and vorticity values.
Our results are also examined with regard to their consistency with the continuum mechanical con-
cept of deformation gradient, which is known to have a zero curl for compatible deformations.
The utility of this research is apparent through its ability to link atomistic simulation results with
continuum mechanics over various volumes of interest.

5.1.1 Motivation

Nanostructured materials have shown potential improvements in numerous engineering applica-
tions; however, insight into deformation mechanisms governing their enhanced mechanical behav-
ior and eventual failure is still limited [161, 242]. As material grain size is reduced to this scale,
intercrystalline regions (e.g. grain boundaries and triple junctions) become more influential on
material behavior owing to an increase in percentage of atoms located at or near these regions
[189, 250]. Recently, research results have supported the idea that deformation accommodation
mechanisms change as grain size is reduced, and the breakdown of the classical Hall-Petch rela-
tionship describing the connection between grain size and strength [39, 199, 206]. This research
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suggests that intercrystalline atomic activities begin to control the onset of nanoscale plasticity in
these materials, and that grain boundaries and triple junctions become suspect for the localization
of inelastic deformation mechanisms. It is important to remember that while the origins of these
events occur at atomic length scales, material behavior is ultimately realized at the macroscopic
level. Accordingly, recent modeling efforts have focused on bridging both length and time scales
to understand the influence of structural features on material plasticity. However, there commonly
seems to be an inherent disconnect in larger-scale models from the underlying behavior of these
nanoscale deformation mechanisms. Thus, it is necessary to compliment such large-scale models
with nanoscale information such as insight into various inelastic deformation mechanisms from
atomistic simulations. The eventual outcome of such activities could lead to improved modeling
methods for understanding nanoscale feature influence on macroscale behavior, and the implemen-
tation of fracture/fatigue resistant features into current engineering materials.

In this section, we present research that concerns implementing continuum mechanical con-
cepts within an atomistic formulation. Additionally, both 2D and 3D bicrystalline structures will
be used to analyze the shear deformation response in terms of these continuum mechanical metrics
and look at the production of various deformation fields in regions at or near each grain boundary.
It will be shown that there is a direct correlation between atomic grain boundary structure and shear
deformation mechanism in each structure, and that each mechanism leads to a unique deformation
field that will then be analyzed using the continuum metrics.

5.1.2 Research Summary

5.1.2.1 Background

Continuum mechanical concepts such as the deformation gradient F, rotation tensor (R), veloc-
ity gradient (L), and vorticity (W) have been formulated within an atomistic framework and uti-
lized for investigating the shear deformation behavior of bicrystalline structures of 2D and thin
3D nature. Chapter 2 has provided a method to compute F in an atomistic framework using the
interatomic spacing of an atom (α) and its nearest neighbor (β ) to estimate atomic strain.

F =
∂x
∂X

(5.1)

xαβ

i = FiIX
αβ

I (5.2)

Then by minimizing the least squares summation with respect to F and over all nearest neighbors,
an appropriate value for F is obtained for a particular atom α as shown below

Fα
iI = ω

α
iM(ηα)−1

MI (5.3)

where both ω and η are defined in Chapter 2. This formulation provides an atomistic definition of
the deformation gradient defined for each atom α based on the nearest neighbor list from the refer-
ence configuration. Additional continuum mechanical concepts as previously mentioned can also
be formulated within an atomistic framework based on this description and associated definitions.
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5.1.2.2 Computational Setup

Both two-dimensional and thin three-dimensional bicrystals were generated containing a symmet-
ric tilt grain boundary located at the vertical center of the simulation domain with the boundary
plane normal in the vertical direction. Periodic boundary conditions were employed in directions
parallel to the grain boundary, and constrained free surfaces were enforced in the vertical direction.
A conjugate gradient energy minimization method in LAMMPS [187] was used to obtain the ini-
tial grain boundary structure with an energy criteria of 10−25, and all grain boundaries were then
equilibrated for 10 picoseconds before undergoing shear deformation at 10 K consistent with the
NVE ensemble.

In the 2D simulations, an interatomic pair potential based on a lattice parameter (the nearest
neighbor distance in a 2D triangular lattice) of 4.08Å was used. The 2D potential is a shifted
Lennard-Jones potential so that both the potential energy and its first derivative are zero at the
cutoff radius. Thus, it is also truncated so that the energy is zero at any radius greater than the
cutoff value. The key potential parameters are the cutoff radius (7.6364 Å) which includes the first
and second neighbor shells only, the cohesive energy (-3.93 eV), mass (196.97 amu), σ (3.63638
Å) and ε (1.5726 eV). While the values of lattice parameter, cohesive energy and atomic mass are
identical to those for gold, this simulated material is not gold as both the potential and the material
are truly two-dimensional. An Embedded Atom Method (EAM) potential for copper [167] was
used in the 3D simulations.

In all simulations, atoms located within a distance of at least three times the potential cutoff
distance of both the top and bottom surfaces were ’frozen’ and held fixed in their perfect lattice po-
sitions throughout the simulation. Shear deformation was applied to each structure by holding the
bottom group completely fixed from movement in all directions, and applying a constant velocity
in the shear direction to the top region. Due to inherent high strain rate conditions of molecular
dynamics (MD), a ramped velocity field was also imposed on all atoms between the two rigid re-
gions. This condition prevents possible shock wave generation in the structure from the prescribed
velocity of the top atomic region. The prescribed velocity given to the top region corresponds to
an approximate strain rate of 108s−1.

5.1.2.3 Mathematical Formulation

In addition to F, continuum measures of R, L, and W were also formulated within an atomistic
framework. A summary of the mathematical formulation of these measures within atomistics is
provided.

Once F is known based on the nearest neighbor list, its multiplicative decomposition into a
rotation tensor R and stretch tensor U is straightforward.

F = RU (5.4)

From there, R is separated into both symmetric and skew-symmetric components.

R = Rsym +Rskew (5.5)

171



Where Rskew is defined by

Rskew =
1
2
(R−RT) (5.6)

As with any skew-symmetric tensor, it can be defined by a single vector. For Rskew this vector is
the microrotation vector φ

φk =−1
2

εi jk(Rskew)i j (5.7)

where εi jk is the permutation symbol.

Another important continuum concept to formulate within this framework is the vorticity vec-
tor, ω , which is derived from the calculation of the velocity gradient, L. In our formulation, we use
the instantaneous atomic velocities output from LAMMPS to approximate L.

L =
∂v
∂x

(5.8)

Please note that both the atomic velocities and positions to calculate L are from the current config-
uration, while the neighbor list remains from the undeformed configuration.

From this description, an atomic definition of L can be formulated in a similar manner to
the formulation of F for each individual atom, α . Beginning with equation (5.8), and forming a
summation over the squared differences, we get

Cα
i =

n

∑
β=1

(vαβ

i −Lα
ikxαβ

k )2 (5.9)

where vαβ

i represents the relative atomic velocity between atom α and its neighbor β , and then
minimize Cα by some choice of Lα .

n

∑
β=1

(vαβ

i xαβ

l −Lα
ikxαβ

k xαβ

l ) = 0 (5.10)

This equation is rearranged and simplified to become

ρ
α
il = Lα

ikτ
α
kl (5.11)

where

ρ
α
il =

n

∑
β=1

vαβ

i xαβ

l (5.12)

and

τ
α
kl =

n

∑
β=1

xαβ

k xαβ

l (5.13)

Once these substitutions are made, equation (5.11) is rewritten as

Lα
ik = ρ

α
il (τ

α)−1
lk (5.14)
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which is now the atomic formulation of the velocity gradient for each atom α depending on all
nearest neighbors β .

The vorticity or spin tensor (W) is the skew-symmetric component of L and is derived from
the additive decomposition of L.

L = D+W (5.15)

Where D defines the rate of deformation tensor and W is the spin or vorticity tensor. The calcula-
tion of W from L is identical to the method used to determine Rskew,

W =
1
2
(L−LT) (5.16)

Then the calculation of ω from W is as follows

ωk =−1
2

εi jkWi j (5.17)

5.1.2.4 Grain Boundary Structures

As previously mentioned, the 2D grain boundary structures were generated with a symmetric tilt
grain boundary located at the vertical center of the simulation domain. Each lattice (upper and
lower) was rotated around a common tilt axis by some degree, θ

2 , from a chosen zero degree direc-
tion. Although this rotation angle was identical for both lattices, the rotation of the upper lattice
was in the opposite direction of the lower lattice from the zero degree direction, thereby creating a
total misorientation angle of θ between the upper and lower lattices. We take a moment to clarify
the difference between misorientation and disorientation angles, because in many continuum mod-
els the disorientation angle is an input variable for grain boundary description. As mentioned, the
misorientation angle, θ , is described as the total angle difference between two lattices from a com-
mon zero degree direction, or common grain boundary period direction. Disorientation angle, Ψ,
is described as the lowest angle difference between the two lattices composing the grain boundary.
In other words, imagine a collection of symmetric tilt grain boundaries of varying misorientation
angles around a common axis, and this collection of boundaries is symmetric with respect to 180◦

misorientation. A grain boundary with a 170◦ misorientation angle in this collection with respect
to some zero degree direction will be defined as having a 10◦ disorientation angle, Ψ=10◦.

For this research, we will be investigating the shear deformation behavior of three 2D grain
boundary structures with a common tilt axis and different Ψ values, and one thin 3D copper sym-
metric tilt grain boundary. Each of the 2D grain boundary structures is approximately 300Å2 in
total area, and the 3D boundary is 300Å x 300Å x 5Å . The three different Ψ values for the 2D
case are 9.4◦, 15.2◦, and 27.8◦. These three different disorientation angle values were chosen be-
cause each boundary structure displayed a different deformation mechanism under applied shear.
The three different mechanisms are grain boundary migration, sliding, and dissociation respec-
tively. Images of the initial grain boundary structures after energy minimization are shown below
in Figures 5.1-5.3 and are colored with respect to potential energy. For the 3D case, the Σ9 (221)
θ=141.1◦ symmetric tilt grain boundary was chosen due to its high free volume content and ease
of calculation. The initial grain boundary structure is shown in Figure 5.4 and is also colored with
respect to potential energy. The misorientation tilt axis is 〈110〉 for the 3D system.
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Figure 5.1. Initial 2D grain boundary structure of a symmetric
tilt grain boundary with Ψ = 9.4◦. Notice the small isolated defect
structures composing the grain boundary that accommodate the
lattice mismatch between the upper and lower grains.

Figure 5.2. Initial 2D grain boundary structure of a symmetric tilt
grain boundary with Ψ = 15.2◦. Notice that as the disorientation
angle increases, the defect structures that compose the boundary
increases.

5.1.2.5 Two-Dimensional Shear Deformation

After the initial grain boundary structures were obtained, two atomic regions were isolated from
the remaining structure and designated as rigid blocks of atoms. These regions are composed of all
atoms located within 15Å of both the vertical (x2) top and bottom of the structure and are fixed in
their equilibrium positions. The bottom group is held fixed to movement and the top group is given
a constant velocity in the horizontal (x1) direction to cause shear in the structure. All atoms located
between these two regions experience an additional ramped velocity value to the present thermal
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Figure 5.3. Initial 2D grain boundary structure of a symmetric
tilt grain boundary with Ψ = 27.8◦. Notice that the entire grain
boundary is composed of repeating 2D atomic structural units to
accommodate the lattice mismatch.

Figure 5.4. Initial thin 3D structure of a 〈110〉 symmetric tilt
grain boundary, Cu (221) θ=141.1◦.

vibrations. The ramped velocity value varies linearly depending on the x2 position of each atom
between the rigid regions. Since the bottom block is held fixed, atoms located in surrounding layers
are given the lowest ramped velocity values and atoms near the top rigid block experience ramped
velocities approximately identical to that given to the top block of atoms. A 2D representation of
this setup is shown in Figure 5.5.

The applied velocity is consistent with an approximate 108 s−1 strain rate for each structure
investigated. After approximately 5% strain of each boundary, the structures were analyzed with
regard to the aforementioned continuum metrics. Figures 5.6-5.8 show the resulting 2D structures
colored with potential energy in order of increasing disorientation angle.
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Figure 5.5. 2D schematic of grain boundary structure and applied
shear deformation.

Figure 5.6. After 5% strain, the grain boundary has migrated
upward approximately 20 atomic layers away from its original lo-
cation.

It is obvious from Figures 5.6-5.8 that each boundary displays a different deformation mech-
anism. In order of increasing disorientation angle, the mechanisms displayed are grain boundary
migration, sliding, and dissociation. This is important because it shows that there is an inher-
ent connection between grain boundary structure and deformation behavior under shear. In other
words, the atomic structure of each grain boundary differs, and this difference in structure leads
to different observed deformation accommodation mechanisms under shear. This does not imply
that each grain boundary structure within this misorientation range will display a unique deforma-
tion mechanism, but that atomic grain boundary structure influences its mechanical response. It is
possible that other shear deformation mechanisms exist within this misorientation range; however,
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Figure 5.7. After 5% strain, small structural changes have oc-
cured and discrete events of grain boundary sliding have been ob-
served.

Figure 5.8. After 5% strain, localized dissociation events are
observed and associated with boundary structural changes.

it is more likely that additional boundaries within this misorientation range would display some
variational combination of the aforementioned mechanisms.

To further investigate the shear deformation response of these grain boundary structures, con-
tinuum mechanical concepts such as F, R, L, and W are employed. First, we will look at the grain
boundary migration mechanism with regard to each metric.

The components of the deformation gradient provide information about the influence of a spe-
cific direction on atomic deformation. The migration planes are highlighted in Figure 5.9 (by
their high value of F11) because they undergo a different deformation than the lattice regions lo-
cated between the migration planes (inter-regions) with regard to the x1 direction. In Figure 5.10,

177



Figure 5.9. The F11 component for the grain boundary migra-
tion mechanism. Notice the difference in deformation between the
migration planes and the lattice regions located between the mi-
gration planes.

Figure 5.10. The F12 component shows a relatively uniform de-
formation field under grain boundary migration with regard to the
x2 direction.

a relatively uniform deformation field is shown that highlights the lattice region that underwent
deformation as a consequence of the migration with respect to x2. This region is without large
contrasts because there is very little difference in the dependence of the x1 component of atomic
position in the deformed configuration on the x2 direction in the initial configuration. Figure 5.11
displays rotation information about the migration mechanism. Atoms located on the migration
path experience a different rotation than inter-region atoms. One thing to note is that as the grain
boundary migrates, the orientation of the upper lattice region traversed by the migrating boundary
rotates to match the lower lattice orientation.

In addition to the valuable information obtained from analyzing the deformation fields with
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Figure 5.11. The R12 component for the migration mechanism
displays rotation behavior for atoms located in both the migration
planes and between.

Figure 5.12. φ3 for the migration mechanism. Notice the sign
difference between the atoms located around the migration plane
and those atoms in the inter-regions.

regard to F and R, further insight can be provided from specific descriptions of φ and ω within our
atomistic framework to estimate lattice curvature and vorticity. It is this information that is useful
for larger scale models.

Figures 5.12 through 5.14 show φ3, φ3,1 and φ3,2 for the migration mechanism. It can be seen
that φ can be extremely useful for analyzing atomistic data. The implementation of R and its
derived parameter φ provide insight into the extent of atomic rotation in localized regions. For
example, consider the grain boundary migration case shown in Figure 5.12. We have already
discussed that atoms located around the migration planes undergo a different deformation path
than those atoms located in inter-regions. φ further provides insight into the rotation of their
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Figure 5.13. The gradient of φ3 with respect to the x1 direction.

Figure 5.14. The gradient of φ3 with respect to the x2 direction.

deformation path. From this description, it is clear that the rotation of migration plane atoms is
different from that of inter-region atoms not only in magnitude but also in direction. Additionally,
it is clear that a large collective atomic rotation, but not small isolated rotation fields, is present.
All inter-region atoms possess an almost identical value of φ3 (near -0.2), as do migration plane
atoms (near 0.13).

The grain boundary sliding mechanism produces negligible deformation in the surrounding
lattice regions as shown in Figures 5.7 and 5.15. The observed deformation for this mechanism is
highly localized to the boundary and does not generate considerable deformation fields outside of
the boundary. Therefore, explicit consideration of this mechanism and its continuum mechanical
treatment are ignored in this paper.

Next, the grain boundary dissociation mechanism is analyzed using the continuum metrics.
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Figure 5.15. φ3 for the grain boundary sliding mechanism. No-
tice that there is little rotation extending out away from the bound-
ary as sliding occurs.

Similarities and differences between the results of this mechanism and the migration mechanism
follow.

Figure 5.16. The F11 component is shown for grain boundary
dissociation. This picture highlights the localized nature of the
grain boundary deformation field.

Confined deformation is observed in the grain boundary dissociation mechanism. In Fig-
ure 5.16, the F11 component shows the dependence of x1 deformation on the x1 direction. Most
of the obvious deformation in the x1 direction occurs within the grain boundary plane as sliding.
However, there is small deformation for atoms located near the dissociated planes extending out
away from the boundary. In Figure 5.17, the F12 component shows the x1 deformation dependence
on x2 position. Atoms located within the dissociated region experience the greatest effect.
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Figure 5.17. The F12 component is shown for grain boundary
dissociation. The only significant pattern observed in this image is
within the dissociation region.

Figure 5.18. φ3 for the dissociation mechanism. Notice the local-
ized rotation values occurring in regions surrounding the slipped
planes. Atoms not located in the grain boundary or in these re-
gions experience negligible microrotation.

As the dissociation occurs, atoms located on neighboring atomic planes to the slip plane possess
some small component of rotation in their neighboring atoms. It is obvious from Figure 5.18 that
the direction of the microrotation component is different on either side of the slip plane, indicating
that an atom’s nearest neighbors undergo a small simultaneous rotation as dissociation occurs.
Figures 5.19 and 5.20 display the x1 and x2 components of the gradient of φ3, respectively.

This mechanism is quite different from the migration mechanism because the atomic deforma-
tion accommodation is mainly due to sliding events between atoms with small atomic rotations
around the slipped planes, and in the migration mechanism it is mainly due to large collective
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Figure 5.19. The gradient of φ3 with respect to the x1 direction.

Figure 5.20. The gradient of φ3 with respect to the x2 direction.

atomic rotation. The dissociations that arise in this case are localized slipping events occurring
between two planes with small rotation fields between the slip planes. This mechanisms is unlike
the large atomic region rotations observed in Figure 5.12 as the grain boundary migrates vertically,
which accommodates the mismatch between the two grain orientations.

The calculation of L from the instantaneous atomic velocities can be decomposed into sym-
metric and skew-symmetric components. From the skew-symmetric component an axial vector
is defined to be representative of vorticity. In particular, the third component of this axial vector
provides an estimate of the atomic vorticity. Figures 5.21 and 5.22 show ω3 for both the migration
and dissociation mechanisms.

One of the most obvious features of these figures is the presence of noise in the lattices. We
think that this is a natural consequence of the proposed method for determining L from the instan-
taneous atomic velocities. This point will be further elaborated on in the final section of this report
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Figure 5.21. ω3 under grain boundary migration. There are no
obvious vorticity patterns or regions of significant interest under
boundary migration. Notice the existence of lattice noise in this
formulation of vorticity using instantaneous atomic velocity.

Figure 5.22. ω3 under grain boundary dissociation. Small lo-
calized vorticity fields appear in neighborhoods surrounding the
dissociated planes.

concerning future work. In the migration example (Figure 5.21), there are no defining vorticity
fields at 5% strain, and the dissociation example (Figure 5.22) displays only small localized vor-
ticity fields near the slip planes. This indicates that during grain boundary dissociation, only atoms
located near dissociated planes experience some small vorticity during deformation.
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5.1.2.6 Three-Dimensional Shear Deformation

A thin 3D bicrystalline structure containing a Σ9 (221) symmetric tilt grain boundary with a misori-
entation angle of θ=109.5◦ was used to investigate the 3D shear deformation. This grain boundary
structure is fairly unique due to its atomic composition and presence of high free volume associated
with the E structural unit [218, 239]. These qualities have previously been noted to trigger signifi-
cant atomic shuffling events providing a high susceptibility for this boundary to sliding under shear
[241, 203]. As revealed by the centrosymmetry parameter shown in Figure 5.23, a partial disloca-
tion is nucleated at the boundary and emmitted into the lower lattice along with atomic shuffling
within the boundary at an approximate strain of 3%.

Figure 5.23. The shear deformation of the (221) Cu boundary at
about 3% strain colored with centrosymmetry. Notice the partial
dislocation nucleation from the boundary into the lower lattice ac-
companying numerous atomic shuffling events within the bound-
ary.

As in the 2D cases, F, R, φ , and ω can provide a deeper insight into atomic phenomena during
the partial dislocation nucleation process. F12 and R12 are shown in Figures 5.24 and 5.25, and φ3
and ω3 in Figures 5.26 and 5.27.

While comparing the shear deformation of this boundary to that observed in the 2D cases, there
are a few points to note. Because this boundary is 3D in nature and of approximately the same area
perpendicular to the tilt axis, there are many more atoms to consider in the structure. In addition,
atomic interactions in all three dimensions are considered during the simulation, so there is an in-
fluence from the third dimension on deformation response. A different deformation mechanism is
observed in this case, a single partial dislocation is nucleated and emitted from the grain boundary
into the lower lattice. This is seen in all images for the 3D case. In particular, the stacking fault left
behind the leading partial dislocation after emission is obvious in Figure 5.23. Accompanying the
emission are many atomic shuffling events within the boundary. As noted previously, this occurs
due to the atomic structural makeup of the boundary being composed entirely of E structural units
[203].
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Figure 5.24. F12 shows that all atoms located within the bound-
ary region have experienced deformation at 3% strain. However,
the dependence of the deformation on the vertical direction is not
uniform for these atoms. Notice that there is no deformation reach-
ing into either lattice other than the partial dislocation.

Figure 5.25. R12 shows similar results to F12. There is non-
uniform dependence of the rotation component on the vertical di-
rection, and there is little rotation extending out beyond the bound-
ary region.

Figures 5.24-5.27 display some of the important continuum mechanical concepts applied within
our atomistic framework for this grain boundary structure. Particularly, Figures 5.24 and 5.25
show F12 and R12 respectively. These figures point out that besides the partial dislocation, all other
atomic deformation is confined to the grain boundary region and tends to be non-uniform. Fig-
ures 5.26 and 5.27 are images of φ3 and of ω3, once again showing lattice curvature and vorticity.
We see that lattice curvature exists in and around the previously noted deformation regions, and
that there is little atomic curvature extending out beyond these regions. The vorticity is also con-
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Figure 5.26. φ3 gives information on atomic lattice curvature,
and in this case the curvature is mostly constrained to the boundary
region. Small localized regions of lattice curvature exist in areas
directly neighboring the nucleation regions.

Figure 5.27. ω3 for shear deformation of the 3D system. Notice
the lack of obvious vorticity outside of the grain boundary, and the
presence of noise still in the lattice.

fined to the grain boundary, indicating the lack of any significant atomic vorticity accompanying
the partial emission into the lattice.

5.1.3 Conclusions

This work has shown that continuum mechanical metrics such as R, L, φ and ω can be computed
using an atomistic framework based on the description of F as provided in Chapter 2. Addition-
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ally, the implementation of these descriptions can provide unique and fundamental insight into
atomic phenomena occurring at the origins of nanoscale plasticity events under applied shear in
both 2D and thin 3D bicrystalline structures. Examples of three different deformation mechanisms
(grain boundary migration, sliding and dissociation) associated with three different grain bound-
ary structures in 2D were shown and explained in the context of these continuum metrics. Each
metric provided distinct information about atomic behavior during each mechanism. It was also
shown that estimates of lattice curvature and vorticity can be obtained from these simulations.
By applying these continuum mechanical concepts, additional insight can be obtained into these
mechanisms from an atomistic point of view. Various atomic behaviors were seen in the context of
each continuum metric during shear deformation, and information about the extent of deformation
away from the boundary was provided.

In 3D, the shear deformation response of the Σ9 (221) symmetric tilt grain boundary was an-
alyzed with regard to these continuum mechanical concepts. A combination of partial dislocation
emission and atomic shuffling was observed in these simulations accompanying grain boundary
sliding, and useful insight of these mechanisms and subsequent deformation fields was obtained
via the aforementioned metrics. It was also noted that, up to the strain investigated at the simulated
strain rate, negligible deformation occurred away from the grain boundary itself. It is possible that
more complex deformation behavior would be observed at different strain rates and in simulations
considering higher strain levels. Therefore, we wish to explore these ideas as outlined in the fol-
lowing section. In addition, we feel that possible improvement in the vorticity calculations can be
achieved by altering the formulation of L.

5.1.4 Future Work

5.1.4.1 L Formulation

It was mentioned in section 5.1.2.3 that due to the formulation of L, which uses instantaneous
atomic velocities directly to compute L, inherent noise is observed in lattice regions surrounding
the grain boundaries (Figures 5.21 and 5.22). Therefore, we present two additional methods for
determining L that we wish to explore. However, before these two methods are outlined, a brief
overview of L is required.

The present method for determining L is based on instantaneous atomic velocities with regard
to spatial positions according to the following equation.

L =
∂v
∂x

(5.18)

In this equation, v represents the current atomic velocity and x is the current or spatial atomic
position. L can also be defined by the following:

L = ḞF−1 (5.19)

Since F is determined at each timestep throughout the simulation, approximating Ḟ is possible.
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The second method comes from a chain-rule description of L,

L =
∂v
∂x

=
∂v
∂X

∂X
∂x

=
∂v
∂X

F−1 (5.20)

In this description, the formulation of ∂v
∂X is dependent on the reference atomic positions and F−1.

Within this formulation of L, a current neighbor list is stored and the calculated velocity gradient
measures are dependent on the reference neighbor distances of this list. It is quite possible that one
or both methods discussed here could improve the vorticity results shown previously, as the new L
formulation can minimize the effect of thermal vibration.

5.1.4.2 Simulations

An important extension of the current simulations is to implement larger simulation domains and
continue the deformations to much larger strains. The effect of lattice size on both 2D and 3D
shear simulations is not well understood. It is possible that different deformation phenomena
or more complex mechanisms would appear within larger structures. The influence of the rigid
atomic regions or periodic grain boundary length on shear deformation behavior is another point
to address. Questions regarding these subjects still remain unanswered and will be addressed in
our future work.

Figure 5.28. Atomic structure of a columnar hexagonal
nanocrystalline model colored with energy. This image shows a
possible geometry that could be used to investigate the influence
of numerous variables such as boundary length, triple junctions,
and grain boundary character on the resulting deformation fields
outlined in this work.

We would also like to analyze deformation fields in more complex atomic structures. For ex-
ample, in Figure 5.28 a nanocrystalline hexagonal grain structure is shown colored with respect
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to energy. The structure is 3D periodic containing 4 separate grains with different atomic lattice
orientations producing tilt boundary structures with a common 〈110〉 tilt axis. The goal would
be to apply uniaxial tension to the structure and investigate the evolution of the aforementioned
continuum metrics with deformation. Most of the grain boundaries would experience components
of both tension and shear stress giving rise to more complex deformation mechanisms than those
already investigated in this work. The influence of boundary length, boundary character and distri-
bution, nearby triple junctions, and deformation mechanisms on the mentioned continuum metrics
would be of primary interest. Their dependence on these variables would be characterized, and
the evolution of such fields could provide valuable insight into collective atomic behavior vital to
understanding the structure-property relationships observed in nanocrystalline materials.

5.2 Large deformation of single crystal nickel

We also performed 3D MD simulations of single crystal nickel (modeled with the EAM potential
by Foiles et al. [75]) subject to uniaxial compression. The purpose of these simulations was two-
fold:

• First, we wished to examine the extent of defects created during deformations up to large
strains. In this case, ‘large’ denotes strains in excess of 10% and reaching values as high as
40%. It was our goal to visualize simulation results and determine if disclination structures
could be identified.

• Second, we wished to use the results of such simulations to assess the usefulness of simula-
tion metrics both developed during the course of this project, e.g. lattice curvature, and those
developed previously, e.g. centrosymmetry parameter [126] and slip vector [258].

The system we analyzed was cubic in shape in its undeformed configuration of dimensions
176 Å on each side and consisted of 500,000 atoms. Compression rates of 107/sec and 108/sec were
applied in one of the cubic directions, with periodic boundary conditions applied in the directions
transverse to the loading direction.

5.2.1 Unaxial compression at a rate of 107/sec

Figure 5.29 shows the system subjected to a compression rate of 107/sec at various amounts of
compression with atoms colored according to their value of potential energy. For clarity, only
atoms with potential energy higher than a particular value are shown. The loading direction is the
horizontal “x” direction shown in the sub-figures. This figure shows several interesting features:
First, dislocations (shown in the sub-figures as light-blue curves) are only nucleated at strains
higher than 3.7%. Above this strain, dislocation threads or ribbons are created and propagate to
various positions along {111} slip planes. As compression increases, a complex but structured
pattern appears. This pattern becomes hard to discern for strains higher than 8%, but Figure 5.29
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(a) 3.7% strain (b) 3.8% strain (c) 3.9% strain

(d) 4.5% strain (e) 5.0% strain (f) 5.5% strain

(g) 6.0% strain (h) 6.5% strain (i) 7.0% strain

(j) 7.5% strain (k) 8.0% strain (l) 9.0% strain

(m) 10.0% strain (n) 12.0% strain (o) 13.0% strain

Figure 5.29. Compression of single crystal nickel for ė =
107/s−1. Atoms colored by potential energy values.
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clearly shows an increase in the density of dislocations present as well as an alteration in the pattern
that isolates atoms of high potential energy.

Figure 5.30 shows many of the same compression states as shown in Figure 5.29, but has
atoms colored according to their value of centrosymmetry parameter. As before, atoms are filtered
according to a minimum value of centrosymmetry in order to eliminate many of the atoms not
involved with a crystalline defect. This figure shows that the dislocations nucleated at strains
higher than 3.7% consist of both partial 〈112〉-type dislocations and full 〈110〉-type dislocations.
This is evidenced by the large number of green atoms shown on oblique {111} planes, indicating
that those planes contain stacking faults. The dislocation cores themselves can be identified as
light blue and cyan curves that lie on top of the faulted planes. It is observed that as compression
increases, a majority of these faults do not dissipate; rather, multiple faults on parallel {111} planes
are created and intersect one another.

More about the dislocation and defect structures created during compression can be learned by
isolating specific levels of compression and examining the full and partial dislocation structures by
using both centrosymmetry [126] and slip vector [258]. Both of these quantities are more sensitive
to the presence of dislocations, stacking faults and similar crystalline defects than potential energy
is. Figures 5.31, 5.32 and 5.33 show the system at compressions of 6%, 9% and 12%, respec-
tively. Figures 5.31(a) and 5.31(b) both show the system with atoms colored by centrosymmetry
parameter, albeit with different filtering ranges. This filtering confirms that the pattern observed in
Figure 5.29 using potential energy values does indeed identify dislocation cores that lie between
stacking fault regions on the same slip planes. Figures 5.31(c) and 5.31(d), which show atoms
colored by slip vector, reveal that full dislocations are also present and have left behind isolated
regions that should contain perfectly structured crystal (shown in red and orange-red in the two
figures). Figures 5.32 and 5.33 show that these structures continue to evolve with increased com-
pression. At 12% compression, many atoms possess very high values of slip vector (higher than the
value corresponding to a single, full dislocation, i.e. 2.489 Å), indicating that multiple full and/or
partial dislocations have been created and propagated through the crystal.

Regarding the deformation metrics that have been developed during the course of this project
and have been described elsewhere in this report, Figure 5.34 shows the system at various levels of
compression with atoms colored by the absolute value of one component of the lattice curvature
tensor (|κ12|), again with some atoms not shown due to the filter imposing a minimum value of this
variable. This figure is very interesting; it shows some atoms along the side faces perpendicular to
the loading direction in specific “X”-shaped patterns. Also, it reveals (at strains of 6% and above)
the regions where full 〈110〉-type dislocations have been nucleated and have propagated through.
In contrast with other variables, it does not show any of the partial dislocation cores and stacking
faults present when centrosymmetry and potential energy was used for visualization. While the
“X” pattern may be caused by boundary effects due to the small size of our system, the semi-
circular shapes present along with absence of partial dislocations and stacking faults indicate that
the kinematic variables developed may need enhancement in order to detect and identify the latter
defects.

Regarding the evolution of thermodynamic continuum variables, Figure 5.35 shows stress-
strain curves (both normal and shear stresses) during compression. Figure 5.35(a) shows that

192



(a) 3.7% strain (b) 3.8% strain (c) 3.9% strain

(d) 4.5% strain (e) 5.0% strain (f) 5.5% strain

(g) 6.0% strain (h) 6.5% strain (i) 7.0% strain

(j) 8.0% strain (k) 9.0% strain (l) 10.0% strain

(m) 12.0% strain (n) 14.0% strain (o) 16.8% strain

Figure 5.30. Compression of single crystal nickel for ė =
107/s−1. Atoms colored by centrosymmetry values.
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(a) (b)

(c) (d)

Figure 5.31. Compression of single crystal nickel for e = 6%.
(a) and (b) are colored by centrosymmetry, (c) and (d) are colored
by slip vector.
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(a) (b)

(c) (d)

Figure 5.32. Compression of single crystal nickel for e = 9%.
(a) and (b) are colored by centrosymmetry, (c) and (d) are colored
by slip vector.
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(a) (b)

(c)

Figure 5.33. Compression of single crystal nickel for e = 12%.
(a) is colored by centrosymmetry, (b) and (c) are colored by slip
vector.
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(a) 4.0% strain (b) 5.0% strain (c) 6.0% strain

(d) 7.0% strain (e) 8.0% strain (f) 9.0% strain

(g) 10.0% strain (h) 11.0% strain (i) 12.0% strain

Figure 5.34. Compression of single crystal nickel for ė =
107/s−1. Atoms colored by |κ12|.
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(a) (b)

Figure 5.35. Stress-strain curves for compression of single crys-
tal nickel for ė = 107/s−1: (a) normal stresses (b) shear stresses.
Stresses (the vertical axes) are given in units of GPa.

normal stresses (σxx shown in blue, σyy shown in red and σzz shown in gold) increase nonlinearly
until dislocation nucleation begins (at a strain of approximately 3.8%), and then oscillate as an
increasing number of dislocations and other defects are created. Figure 5.35(b), which displays
shear stress evolution (σxy shown in blue, σxz shown in red and σyz shown in gold), shows that
shear stresses are zero prior to dislocation nucleation, and oscillate with increasing magnitude as
the amount of compression increases. An interesting observation is that hardening is not observed
in the evolution of normal stresses. In fact, the normal stress in the compression direction appears
to be softening at strains higher than 8%, while the other normal stresses level off in this high-strain
regime.

5.2.2 Unaxial compression at a rate of 108/sec

For comparison, we performed the same simulation as in the previous section but at a higher
compression rate, 108/sec. Figure 5.36 shows various amounts of compression during the course of
this simulation with atoms colored by their value of potential energy. Similarly, Figure 5.37 shows
these levels of compression (and ones higher) with atoms colored by their value of centrosymmetry
parameter. These figures display the same characteristics as did the lower compression rate. A
complex, structured pattern evolves at levels of strain less than about 8%, and then becomes more
complex and irregular as strain is increased to 10% and beyond. This disorder persists to strains
up to 40%, as shown in Figure 5.37(o).

As we did in the previous section, we also examine the evolution of normal and shear stresses
as compression occurs. This is shown in Figure 5.38. Colors in these curves denote the same
quantities as in Figure 5.35. These curves also display similar characteristics to their lower rate
counterparts. It is observed that as compression exceeds 20% strain, normal stress in the direction
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(a) 3.0% strain (b) 4.0% strain (c) 5.0% strain

(d) 6.0% strain (e) 7.0% strain (f) 8.0% strain

(g) 9.0% strain (h) 10.0% strain (i) 11.0% strain

(j) 12.0% strain (k) 13.0% strain

Figure 5.36. Compression of single crystal nickel for ė =
108/s−1. Atoms colored by potential energy values.
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(a) 4.0% strain (b) 5.0% strain (c) 6.0% strain

(d) 8.0% strain (e) 9.0% strain (f) 10.0% strain

(g) 12.0% strain (h) 14.0% strain (i) 16.0% strain

(j) 17.0% strain (k) 20.0% strain (l) 25.0% strain

(m) 30.0% strain (n) 35.0% strain (o) 40.0% strain

Figure 5.37. Compression of single crystal nickel for ė =
108/s−1. Atoms colored by centrosymmetry values.
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(a) (b)

Figure 5.38. Stress-strain curves for compression of single crys-
tal nickel for ė = 108/s−1: (a) normal stresses (b) shear stresses.
Stresses (the vertical axes) are given in units of GPa.

of compression decreases (or perhaps levels off) while normal stress in the transverse directions
increases, indicating that hardening may be occurring. One interesting difference is that the mag-
nitude of shear stresses that arise due to defect creation appears high at low strains and decreases
with increasing compression. The same trend was not observed for the slower rate case.

5.2.3 Discussion

Clearly more analysis of the presented simulations is warranted, as are additional simulations to
explore the effects of boundary conditions, loading rate and system size. It has been observed that
substructure formation in metals is typically on the order of hundreds of nanometers (thousands of
Å’s), whereas our system here is only 176 Å on a side prior to compression. It would be desirable
to simulate systems of dimension ∼ 1000 nm on each side, but that would require approximately
91.7 billion atoms, a time-consuming and burdensome computation. A better strategy would be to
explore a range of sizes (i.e. 200 Å - 500 Å) consisting of a manageable number of atoms, thereby
identifying those aspects related to system size and other features that are independent of system
size.

One further consideration is the use of the EAM potential by Foiles et al. [75]. This potential is
known to exhibit an un-characteristically low value of stacking fault energy, which directly governs
the size and shape of dislocations cores and stacking faults. Use of a potential with a more accurate
stacking fault energy would be useful in comparison with experimental results of dislocation and
disclination substructure evolution.

The figures shown in the previous sections have demonstrated that the metrics developed here
and elsewhere provide unique insight on the evolution of defects in deforming crystalline materials.
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Future work should focus on counting atoms with metric values in specific ranges in order to
quantify dislocation and defect densities. Also, calculation of additional variables (such as rotation
and vorticity) for these and other simulations may enable a stronger connection to be made to the
micropolar small-strain theory developed in Chapter 4 and the finite strain theory discussed in the
next chapter.
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Chapter 6

Finite Deformation Theory
Principal Authors: Douglas J. Bammann and Jonathan A. Zimmerman

Our initial plan for this task was to significantly improve the finite strain, coupled dislocation-
disclination theory of Clayton et al. [47] by expanding the multiplicative decomposition of the de-
formation gradient (F) to include distinct components related to lattice distortions due to tilt, twist
and other types of interfacial boundaries, and by developing physically reasonable forms of con-
stitutive relations that govern the evolution of dislocations and disclinations. However, during the
course of our development we discovered fundamental issues regarding physical and mathematical
consistency across length scales that cloud that theorys implementation. We have discovered that
the original decomposition of the deformation gradient, along with the associated lattice directors,
is inconsistent with the assumption of micropolar deformation. Indeed, this theory is implicitly
micromorphic in its mathematical development, although the system of equations developed is
underdetermined with regard to the number of degrees of freedom now represented. We have
reformulated the deformation gradient decomposition to produce a truly micropolar framework:

F = VeFiR̂Fp (6.1)

In this expression, Fp represents plastic deformation related to crystallographic slip, R̂ represents
rotations associated with the presence of disclinations, Fi represents deformations associated with
geometrically necessary dislocations (GNDs), and Fe represents deformation associated with elas-
tic loading. Decoupling the deformations associated with GNDs from those associated with discli-
nations is an essential, innovative feature of our new theory. Restricting the deformation associated
with disclinations to be rotational ensures the resulting theory will be micropolar in nature.

Another innovation developed for our nanomechanical continuum theory is the realization that
the state variables used should be the elastic strain fields resulting from the GND and disclination
defect densities. In previous models, the defect densities themselves were used as state variables.
However, our research has shown that use of such densities as state variables leads to incorrect
expressions for the thermodynamic conjugate forces, i.e. macro and microscale stresses.

Unfortunately, our documentation on this effort is limited due to a project team member leaving
Sandia. On the following pages are a technical presentation given by D.J. Bammann at both the
2007 TMS Annual Meeting (held in Orlando, Florida) and the 1st World Symposium on Multiscale
Material Mechanics and Engineering Sciences (held in Thessaloniki, Greece).
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An Internal State Variable Model of Micro-polar

Elasto-Viscoplasticity
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•Kinematics, balance laws and general kinetic relations developed

•Multiscale volume averaging of crystalline element containing translation and

rotation defects (dislocations and disclinations)

•Macroscopic kinematics - 3 term multiplicative decomposition of the deformation

gradient

•Microlevel - additive decomposition of affine connection into dislocations and

disclinations to the distortion of lattice directors

•Standard macroscale balance laws

•Linear and angular momentum balances at microscale on first and second order

moment stresses associated with geometrically necessary defects

•Micropolar rotations incorporated to capture physics of GNDs not captured by 1st

order gradients of elastic deformation

•of defect structure at multiple length scales

•Incompatible lattice misorientation gradients arising in ductile single crystals

under nominally homogeneous deformations

Modeling Approach

*Clayton, McDowell, Bammann, Int. J. Plasticity, 22 (2006) 210-256

Defect substructure in FCC metals

(Pantleon, 1996; Hughes et al., 1997; 

 Butler & McDowell, 1998;

 Kuhlmann-Wilsdorf, 1999)

•Formation of cells of relatively small orientation organized collectively into larger cell blocks

•Average misorientations between blocks significantly greater than those between cells

•Increase strain !cell block sizes decrease faster than cell sizes

•Disclinations capture gradients of lattice rotation at cell block boundaries that arise from

organization and superposition of small orientations between cells (represented by GNDs)

•Coupled kinetics of evolution of SSDs, GNDs and disclinations !cells and cell blocks will

form under homogeneous loading

•Local minimum in free energy (lack of “cross-quasiconvexity” - Carstensen et al. 2002)

The Problem: Disclinations - grain

fragmentation/subdivision
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Sliding Direction

Formation of misoriented cells during contact sliding

Disclination defects: background

Volterra's elastic model (1907) Li's grain boundary model (1972)

dislocation

     wall
disclination

    dipoles

60° wedge disclination (De Wit, 1970; Lardner, 1974)

Disclinations:

-Can represent self-organized arrays of dislocations

-Introduce another length scale into the continuum theory, 

 along with that of GNDs

-Popular for modeling liquid crystals (Cermelli & Fried, 2002)208
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Kinematics of general lattice defects
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Disclinations: momentum balance
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Disclinations: thermodynamics
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Eshelby stress is driving force for plasticity
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Thermodynamics of mixed defect fields

Energy minimization of a non-convex potential drives evolution of
microstructure (Ball & James, 1987; Carstensen et al., 2002)

Convexity of free energy can be inhibited by competing
mechanisms, even if energy is convex with respect to each

individual mechanism

The challenge remains to postulate specific non-convex potentials
for elastic-plastic materials and develop mathematical and

computational techniques to evolve plastic flow and internal
variables following energy minimization principles under arbitrary

3D deformation histories.
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Free energy and non-convexity
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Conclusion: competing dislocation/disclination mechanisms can destroy global 

convexity, even when free energy is convex in each individual variable. 214
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Crystal Plasticity Kinematics Including Disclinations
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div 0! =
T

! = !

Macro Balance Laws

Crystal Plasticity - Dawson

•256 grains at a point

•Taylor - no equilibrium

•Sachs - no compatibility

•Self consistent - approximate

compatibility and equilibrium

•No boundaries

div 0! =
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Macro Balance Laws

div!̂ = 0

div"̂ + e #!̂ = 0

Current Model

•# grains/cells at a point

•Equilibrium

•Solve BVP

•No approximations

•Grain boundaries and cell walls

included
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State variables

Dislocations, voids, H2

atoms, ……

Kinematics

Thermodynamics

Equilibrium

Degrees of freedom

Conjugate fo
rces

Dissipate - s
tore

energy

Equilibrate at all scales
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Chapter 7

Summary
Principal Author: Jonathan A. Zimmerman

As stated in the abstract to this report, the goal of our project was to develop a consistent man-
ifold model capable of accurately predicting both the evolution of disclinations and their kinetics
as relevant to the deformation of nanocrystalline materials. Additionally, we sought to develop
approaches to extract continuum mechanical information from nanoscale structure to verify any
developed continuum theory that includes dislocation and disclination behavior. To those ends, we
have successfully accomplished the following:

• We have developed a small-strain, micropolar continuum crystal plasticity model to account
for the size-dependent mechanical response in nanocrystalline materials. This model con-
tains an enhanced treatment of grain boundaries (GBs) and the role they play in slip obstruc-
tion, absorption and transmission of dislocations. The proposed model attempts to account
for the geometry of the incoming/outgoing slip planes, the GB orientation and structure, and
the evolution of the boundary’s resistance to slip through an appropriate choice of internal
state variables. In contrast to current approaches of modeling GBs, which tend to describe the
increased slip resistance solely in terms of the presence of excess geometrically necessary
dislocations, we are motivated by experimental observations to propose a non-associative
plasticity model to describe the slip transmission process.

This model represents advancements in both the development and understanding of a class of
generalized (micropolar) crystal plasticity models. Through its development, we have pro-
vided guidance on which type of micropolar formulation may be worth further pursuing as an
alternative to the more common types of slip-gradient based approaches to crystal plasticity.
Moreover, a novel methodology describing the effectiveness of GBs against initial slip trans-
fer as well as boundary strength evolution is presented in terms of slip system geometry and
GB structure. The model is amenable for inclusion within arbitrary crystal plasticity models,
and can accept information from more detailed simulations of dislocation/GB interactions.

• We have developed expressions for evaluating an atomic-scale deformation gradient and
related kinematic variables within an atomistic simulation framework. We have character-
ized and shown the usefulness of this metric through analysis of one-dimensional atomic
chain, a biaxially stretched thin film containing a surface ledge, and a FCC metal subject
to indentation loading from a nanometer-scale indenter. We have shown that our atomic-
scale deformation gradient is consistent with its continuum mechanical counterpart, which
is known to have a zero curl for compatible deformations, in most instances. While the
concept of the multiplicative decomposition of the deformation gradient within the context
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of plasticity theory was considered, our simulation results show zero values of curl within
material containing defects such as dislocation loops and stacking faults. As such, it appears
that our atomic-scale metric captures the full, compatible deformation field that the material
is subject to. The deformation gradient expression itself produces discontinuities reflective
of material that contain defects such as partial dislocations and stacking faults.

• We have derived a material frame formulation for calculating the continuum mechanical
variables of stress and heat flux based on atomic scale quantities native to molecular simu-
lation. In the context of this project’s goal and approach, we expanded the formulation to
define continuum variables from micromorphic continuum theory. Our formulation also in-
cludes expressions for kinematic variables including the microdeformation gradient and the
gyration tensor. These quantities will be essential for future analysis of atomistic simulations
for the purpose of providing input to micropolar and micromorphic continuum theories.

• We have used our expertise in molecular simulation, along with some of the metrics devel-
oped in the course of this project, to examine bicrystal grain boundaries subjected to shear
loading (in both 2 and 3 dimensions) and single crystals subjected to uniaxial compression.
With regard to the bicrystal system, our simulations reveal pronounced deformation fields
that exist in small regions surrounding the grain boundary, and demonstrate the influence of
interfacial structure on mechanical behavior for the thin models investigated. Specifically,
our simulation results show specific mechanisms of grain boundary migration, sliding and
dissociation. These mechanisms are not fully incorporated into the small-strain micropolar
theory and indicate future development of that model needs to include such mechanisms.
Our simulations of single crystal compression display a complex evolution of partial dislo-
cations, full dislocations and stacking faults. Although some analysis was performed using
the kinematic metrics developed during this project, future work is required to isolate the ef-
fectiveness of the various metrics in detecting and visualizing specific types of defects, and
to develop a means to use these metrics to quantify dislocation and other defect densities.

• Finally, we have done some preliminary development on a finite (i.e. large) strain defor-
mation theory capable of predicting lattice distortions due to tilt, twist and other types of
interfacial boundaries, which contains physically reasonable forms of constitutive relations
that govern the evolution of dislocations and disclinations. We have made some innovations
including the reformulation of the deformation gradient decomposition to include separate
portions for disclinations and geometrically necessary dislocations, and the identification of
elastic strain fields as the proper internal state variables for such a theory. While much more
work needs to be done before our theory is useful in an engineering analysis, we have de-
veloped and presented some of the initial formulation for the kinematics, thermodynamics,
momentum balance, and energy balance of a finite deformation theory.

Ultimately, our goal was to develop our manifold models to a sufficient state as comparisons
could be made with existing experimental data[119] on nanocrystalline materials and thin films
to determine the applicability of the continuum model at these very small length scales. While
this degree of development was not accomplished in this project, we have nonetheless completed
a body of work that will assist model developers to achieve such a goal at some point in the future.
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Chapter 8

Publications and Presentations

The following manuscripts and presentations have been produced as a result of the work for this
project:

“A Material Frame Approach for Evaluating Continuum Variables in Atomistic Simulations”,
Jonathan A Zimmerman, Reese E. Jones and Jeremy A. Templeton, Journal of the Mechanics and
Physics of Solids, In Review, 2008.

“Deformation Gradients for Continuum Mechanical Analysis of Atomistic Simulations”,
Jonathan A. Zimmerman, Douglas J. Bammann and Huajian Gao, International Journal of Solids
and Structures, Accepted, 2008.

“An Internal State Variable Model of Micropolar Elasto-Viscoplasticity”, Douglas Bammann,
Jason Mayeur David McDowell, and John Clayton, Presented at the TMS 2007 Annual Meeting
& Exhibition, Orlando, Florida, USA, February 25 - March 1, 2007.

“An Internal State Variable Model of Micropolar Elasto-Viscoplasticity”, Douglas Bammann,
Presented at the 1st World Symposium on Multiscale Material Mechanics and Engineering
Sciences, Thessaloniki, Greece, April 29 - May 1, 2007.

“Calculation of Thermo-Mechanical Quantities in Atomistic Simulations”, Jonathan A.
Zimmerman, Edmund B. Webb III and Steven C. Seel, Presented at the SEM XI Congress &
Exposition on Experimental and Applied Mechanics, Orlando, Florida, USA, June 2 - 5, 2008.

“An Internal State Variable Model of Micropolar Elasto-Viscoplasticity”, Douglas Bammann,
Jason Mayeur David McDowell, Presented at the 2nd International Conference on Heterogeneous
Materials Mechanics (ICHMM-2008), Huangshan, China, June 3 - 8, 2008.

“Deformation Gradients for Continuum Mechanical Analysis of Atomistic Simulations”, J.A.
Zimmerman, D.J. Bammann and H. Gao, To be presented at the International Symposium on
Plasticity 2009, Frenchman’s Reef and Morning Star Marriott Beach Resort, St. Thomas, U.S.
Virgin Islands, January 3- 8, 2009.

“A Material Frame Approach for Evaluating Continuum Variables Within Atomistic
Simulations”, J.A. Zimmerman, R.E. Jones and J.A. Templeton, To be presented at the
International Symposium on Plasticity 2009, Frenchman’s Reef and Morning Star Marriott Beach
Resort, St. Thomas, U.S. Virgin Islands, January 3- 8, 2009.
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“Atomic-Scale Deformation Kinematics for Simulations of Dislocation Nucleation and Bicrystal
Grain Boundary Evolution”, J.A. Zimmerman, G.J. Tucker and D.L. McDowell, To be presented
at the TMS 2008 Annual Meeting & Exhibition, San Francisco, California, USA, February 15-19,
2009.

“Atomic-Scale Deformation Kinematics for Bicrystal Grain Boundaries under Shear Loading”,
G.J. Tucker, D.L. McDowell and J.A. Zimmerman, To be presented at the 12th International
Conference on Fracture, Ottawa, Canada, July 12-17, 2009.
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